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LEP and LHC
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High Energy Leptons: Overview
Past circular and linear electron positron colliders

• LEP (circular) centre-of-mass energy of 205 GeV

• SLC (linear) reached 92 GeV
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Studies of future electron-positron colliders
• ILC, superconducting linear collider
• CLIC, normal conducting linear collider
• FCC-ee and CEPC, circular collider

• A (circular) muon collider is being studied

LHeC and FCC-eh quickly covered
Plasma technology is being considered for linear collider, but long way to go
Gamma-gamma collisions are also being considered



Electron-positron Luminosity

Note: The typical higgs factory energies are close to the cross over in luminosity
Linear collider have polarised beams (80% e-, ILC also 30% e+) and beamstrahlung
• All included in the physics studies
The picture is much clearer at lower or higher energies

Energy dependence:

At low energies circular colliders look good
• Reduction at high energy due to 

synchrotron radiation

At high energies linear colliders excel
• Luminosity per beam power roughly 

constant

Luminosity per facility
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Energy Limit
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accelerating cavitiesCircular collider
• Accelerate beam in many turns
• Let beam collide many times
• But synchrotron radiation

At LEP2 lost 2.75 GeV/turn for E = 105 GeV
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Linear electron-positron collider
• Essentially no synchrotron radiation
• But have to accelerate beams in one pass
• and only collide once, so small beams

Or use heavier particles in circular collider
Muons are 200 times heavier than electrons
But they have a short lifetime (2.2 μs)



Linear Collider Principle
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SLC: The only Linear Collider that existed
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ILC Scenarios
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Waiting for Japan to make a commitment
• Site identified and being investigated
• But executive not yet endorsed project
• Process is going on for many years 

Baseline running example
Note: contains up to 500 GeV, which is not part 
of current baseline proposal



ILC 
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Damping Rings Polarised electron 

sourceRing to Main Linac (RTML)

(including 

 bunch compressors)

e- Main Linac

e+ Main Linac

Parameters Value

C.M.  Energy 250 GeV

Peak luminosity 1.35 x1034 cm-2s-1

Beam power 5 MW

Beam Rep. rate 5 Hz

E gradient 31.5 MV/m +/-20%

31km
E+ source



Examples of ILC and CLIC Main Parameters
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Parameter Symbol [unit] SLC ILC CLIC CLIC

Centre of mass energy Ecm [GeV] 92 250 380 3000

Luminosity L [1034cm-2s-1] 0.0003 1.35 1.5 6

Luminosity in peak L0.01 [1034cm-2s-1] 0.0003 1 0.9 2

Gradient G [MV/m] 20 31.5 72 100

Particles per bunch N [109] 37 20 5.2 3.72

Bunch length σz [μm] 1000 300 70 44

Collision beam size σx,y [nm/nm] 1700/600 516/7.7 149/2.9 40/1

Vertical emittance εx,y [nm] 3000 35 30 20*

Bunches per pulse nb 1 1312 352 312

Bunch distance Δz [mm] - 554 0.5 0.5

Repetition rate fr [Hz] 120 5 50 50
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Main Linac Unit
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Accelerating cavities
O(65%) of linac length

Accelerating cavitiesBeam guiding quadrupole
Beam position monitor
Corrector kicker



ILC Cavities
Superconducting cavity (Ni at 2 K)
Standing wave structure
RF frequency is 1.3 GHz, 23 cm wavelength
Length is 9 cells = 4.5 wavelengths = 1 m
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klystron load damping antenna

Pulsed operation:
5 x 1.6 ms pulses per second
Gradient is 31.5 MV/m

In rings typically
• no pulsing
• lower frequencies (400 MHZ in LHC)
• lower gradient (O(<20 MV/m))



ILC Gradient Limitations
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Theoretical gradient limit is 50-60 MV/m
• But can quench at lower gradient
• or Q value decreases
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ILC baseline process
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Cavities have different performancies



ILC Cavity Treatment
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Control of material
Avoid defects
Ensure high quality
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New potential breakthrough: very high Q at very high 

gradients with low temperature (120C) nitrogen treatment

4/12/16Alexander Romanenko | FCC Week 2016 - Rome34

- Record Q at 
fields > 30 
MV/m 

- Preliminary 
data indicates 
potential 15% 
boost in 
achievable 
quench fields

- Can be game 
changer for ILC!

Increase in gradient
Increase in Q0

Under test in many labs

Novel process found (FNAL):
Nitrogen infusion
Fill cavity at 120°C for a day 
with low pressure of N2

High pressure rinsingBakeout

Electropolishing
fill with H2SO4, apply 
current to remove 
thin surface layer



Note: Pulsed Operation
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0.9ms 0.73ms

5 RF pulses of 1.6 ms per second (1312 bunches in 0.73 ms):

Because field leads to losses in the wall
• About 1 W/m
• With no pulsing losses would be O(100 W/m)

RF power in pulse: 5 MW / (5 x 0.73 ms) = O(1500 MW) = O (150 klystrons)



Note: Cryogenics

   

Pcryo =
1

h

Troom -Tsource

Tsource
´ Ploss

Pcryo » 700 ´ Ploss

Cavities have small losses

About 1W/m

But cooling costly at low temperatures

Remember Carnot:
   

Ploss = const
1

Q0

´G2
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The typical heat load of 1 W/m
 about 1 kW/m for cryogenics
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Average RF power: 1.6kW/m (3kW/m)
Power into beam about 0.7kW/m 



CLIC Staged Scenario
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Luminosity targets from Physics Study group
Hopefully input from LHC

Central 
complex on 
Prevessin site

Luminosity 
evolution

Lower gradient optimum for lower energy



CLIC: The Basis
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CLIC at 3TeV shown

Stages at Ecms=0.38, 1.5 and 
3TeV L=6x1034cm-2s-1 at 3TeV

Beam power 30MW at 3TeV

50km



CLIC Accelerating Structure

12 GHz, 23 cm long, normal conducting
Loaded gradient  100 MV/m
 Allows to reach higher energies
 140,000 structures at 3 TeV

But strong losses in the walls
 50 RF bursts per second
 240 ns, 60 MW, 312 bunches
 Power during pulse 8.5 x 106 MW (3000 x ILC)
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Power flow
- 1/3 lost in cavity walls
- 1/3 in filling the structure and into load
- 1/3 into the beam

Average RF power about 3 kW/m
About 1 kW/m into beam



CLIC Gradient Limitations
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Breakdowns (discharges during the RF pulse)

• Require p ≤ 3 x 10-7 m-1pulse-1

Structure design based on empirical
constraints, not first principle

• Maximum surface field

• Maximum temperature rise

• Maximum power flow

R&D programme established gradient 
O(100 MV/m)

Shorter pulses have fewer breakdowns



CLIC Two-beam Concept
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100 A drive beam

1.2 A main beam

21

Total instantaneous 
power of O(10TW)

100 A drive 
beam

1.2 A main beam

2m



CLIC Two-beam Module
1st module 
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80 % filling with accelerating structures
11 km for 380 GeV cms
50 km for 3 TeV



CLIC: The Basis
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Main Beam 
Generation 
Complex

50km

Drive Beam Accelerator
acceleration in fully loaded linac 

Power Extraction

Drive Beam Decelerator Section (2  24 total)

Combiner 
Ring  3

Combiner 
Ring  4

Delay Loop  2
gap creation, pulse compression 
& frequency multiplication

RF Transverse 
Deflectors



D. Schulte, Future Colliders 2, BND, 2024 A. Andersson24



DRIVE BEAM 

LINAC

COMBINER

RING

CLIC Test Facility (CTF3)

DELAY 

LOOP

CLEX

TBL

Two Beam 

Module
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Drive Beam Combination in CTF3

D. Schulte, Future Colliders 2, BND, 2024

End of linac Delay loop

After delay loop

30A

DL CR

26

In combiner ring

Measured accelerating gradient

Maximum gradient 
145 MV/m

Note: Efficiencies
RF to drive beam >95%
Drive beam to RF >95%

Total efficiency wall plug to 
main beam is about 10%



Luminosity and Parameter Drivers

Beam Quality
(+bunch length)

Need to ensure that one can achieve each parameter
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Can re-write normal 
luminosity formula

Luminosity
spectrum

Beam power

27



Beam-beam Effect
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Z direction [μm]

Dense beams focus each other
 emitt beamstrahlung

Beam-beam force on

Typically aim for O(1)



Luminosity and Beam Quality
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Luminosity

spectrum
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Δεx [nm] Δεy [nm]

Total 

contribution

Design limits Static 

imperf.

Dynamic 

imperf.

Damping ring exit 700 5 0 0

End of RTML 150 1 2 2

End of main linac 50 0 5 5

Interaction point 50 0 5 5

sum 950 6 12 12

Imperfections are the main source 

of final vertical emittance

Require 90% likelihood to meet 

static emittance growth target

Damping ring main source of 

horizontal emittance

But value is OK, as we will see



Damping Rings
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Important progress in collaboration with light source community

Studies of lattice and collective effects show that emittance targets can be reached for 3TeV

Currently optimising for 380 GeV
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Main Linac: Low Emittance Preservation

7 March 2018 CERN Academic Training, Daniel Schulte 31

Beam stability

• incoming beam can jitter (have small offsets) and become unstable

• lattice design, choice of beam parameters

Static imperfections

• errors of reference line, elements to reference line, elements. . .

• excellent pre-alignment, beam-based alignment, beam-based tuning

Dynamic imperfections

• Ground motion, cooling water induced jitter, RF jitter, electronic noise, magnetic fields, . . .

• lattice design, BNS damping, component stabilisation, feedback, re-tuning, re-alignment

• Combination of dynamic and static imperfections can be severe

• Lattice design needs to balance dynamic and static effects



Wakefields and Beam Current
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Dtb

2a

Limits are given by wakefields:

With an offset particles produce transverse wakefields

 The head kicks the tail, force is defocusing

 Can render beam unstable

Goal: maximise beam current

 Maximise bunch charge

 Minimise distance between bunches

Multi-bunch wakefields minimised by 

damping and detuning

RF team loves small aperture a

• Less power

• Easier to reach gradient

Beam team hates small aperture a

• More wakefields

• Beam less stable



Tricks of the Beam Physics
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Make the focus strong again

• Use O(10%) of the linac for magnets

• Leads to small beta-function

• Makes the beam stable (strong spring for an oscillator)

For single bunch use BNS damping (Balakin, Novokhatsky and 

Smirnov)

• Introduce energy chirp that compensates transverse 

wakefields

structure quad



Static Imperfections: Main Linac Alignment 
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The error for this is most critical misalignment of components is of the order O(10μm)

2) Establish reference system with overlapping wires, has some error but is not critical

3) Align modules remotely to the wires using their sensors and movers

1) Align components accurately on the supporting girders

4) Use sophisticated beam-based alignment such as dispersion free steering (DFS, i.e. different energy beams) to align 

components

In particular to align BPMs



RF Alignment
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Structures scattered on girder

 Wakefield kick

5) Measure beam offset with 

wakefield monitor

Move girder to remove mean offset

 No net wakefield kick

Limit mainly from

• wakefield monitor accuracy (3.5 μm)

• reproducibility of wakefield

• tiny variation of betatron phase along girder

Wakefield monitor:

Measure wakefield in damping waveguide



Main Linac Emittance Growth (3 TeV)
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imperfection with respect to symbol value emitt. growth

BPM offset wire reference σBP M 14 µm 0.367 nm

BPM resolution σres 0.1µm 0.04 nm

accelerating structure offset girder axis σ4 10 µm 0.03 nm

accelerating structure tilt girder axis σt 200µradian 0.38 nm

articulation point offset wire reference σ5 12 µm 0.1 nm

girder end point articulation point σ6 5µm 0.02 nm

wake monitor structure centre σ7 3.5µm 0.54 nm

quadrupole roll longitudinal axis σr 100µradian ≈ 0.12 nm

Goal: less than 10% above Δεy = 5 nm

Further improvement using 

tuning bumps

Emittance growth for 

different imperfections

Using sophisticated 

beam-based methods

0                                 5                               10
                                Δεy,0 [nm]

Note: The tight tolerances are the price for the strong focusing,

Which allowed high beam current



Example: Ground Motion
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In CLIC can reduce dynamic effects at frequencies lower than a few Hz

In ILC can use a bunch-bunch feedback system
• But be careful, bunch-to-bunch noise will be amplified
• e.g. the damping ring extraction kicker kicks each bunch separately, so it will induce noise 

 Andrei Seryi
Friday 2.3.

We spot a problem:

Frequencies cannot be 
mitigated by beam feedback



Example Issue: Ground Motion

Linear Collider Beam Dynamics, CAS 2018
J. Pfingstner
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Resulting Beam Jitter

Linear Collider Beam Dynamics, CAS 2018
J. Pfingstner
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Beams at Collision

Linear Collider Beam Dynamics, CAS 2018
J. Pfingstner
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Stabilisation System

Linear Collider Beam Dynamics, CAS 2018

K. Artoos et al.

J. Snuverink, et al.D. Schulte 41



Impact of Stabilisation on Beam

Linear Collider Beam Dynamics, CAS 2018
J. Pfingstner
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Beam at Collision

Linear Collider Beam Dynamics, CAS 2018
J. Pfingstner
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Beam at Collision

Linear Collider Beam Dynamics, CAS 2018
J. Pfingstner
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Active Stabilisation Results

B10

No stab. 53%/68%

Current stab. 108%/13%

Future stab. 118%/3%

Luminosity achieved/lost 
[%]

Machine model
Beam-based feedback

Code

Close to/better 
than targetLinear Collider Beam Dynamics, CAS 

2018D. Schulte
45



Klystron-based Alternative

Common	modulator	
366	kV,	265	A	

2x	68	MW	
1.625	µsec	

2	x	213	MW	
325	ns	

2	x	Klystron	

2	x	BOC	

10	x	CLIC_AS	x	0.25	m	x	75MV/m	

10	x	42.5	MW	x	325	ns	

Linac	tunnel	

Service	tunnel	
Load#1	

Load#2	

CC	chain	

Develop klystron-based alternative

Expect comparable cost for first energy stage

But increases faster for high energies

Novel high efficiency 

klystrons
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Novel pulse 

compressors

Optimised structure

Novel 

distribution 

system

8

8



Note: Technology Transfer

• FELs (Examples: European X-FEL in 
Hamburg, LCLS at SLAC, SACLA in 
Japan, Swiss FEL, …)

• Medical facilities
• Safety
• Industrial applications
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The technology developed for linear 
colliders is useful for other fields, e.g.

47



FCC-ee
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FCC-ee Design Considerations
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Consistent with later implementation of hadron collider
• Long tunnel

Option for two or four high-luminosity experiments
• Use four-fold symmetry

Synchrotron radiation is an important power consumer
• Limit radiation to 100 MW (sum of both beams)

Basic feasibility
• Implementation close to CERN (civil engineering, geology, …)
• Cost, power consumption, CO2 footprint, …
• Technical risk, …



Key Parameters
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Beam particles emit important synchrotron radiation
• At 182.5 GeV (maximum energy), loss of 9 GeV or ~5% per turn

Design choice: limit radiation power to 50 MW per beam, 100 MW total
• Superconducting cavities can transfer almost all power to the beam
• But RF power sources have some inefficiency

– Need about 160 MW from the grid
• Also cryogenics system is required to maintain cavity 

superconducting
• Not critical for magnet and beampipe cooling – normal-conducting 

magnets

This leads to 
• Lower intensity at higher energy => lower luminosity
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Synchrotron radiation in FCC-ee

Parameter Z WW ZH tt

Ecm [GeV] 91.2 160 240 365

△E [GeV] 0.0394 0.374 1.89 10.42

I [mA] 1270 137 27 4.9

L [1034 cm-2s-1] 141 20 5 1.25



Beam Lifetime

Parameter Z WW ZH tt

Ecm [GeV] 91.2 160 240 365

L [1034 cm-2s-1] 141 20 5 1.25

Beam lifetime [60s] 50 42 100 100

L lifetime [60s] 22 16 14 12
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Short beam lifetime requires 
top-up injection

Beam lifetime is short (18-200 minutes)
• Bremsstrahlung
• Beamstrahlung
• …



Top-up Injection
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Inject small bunches next to circulating bunches

They will merge due to synchrotron damping



Layout Considerations
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K. Oide, J. Gutleber

Double ring e+e- collider

Two or four experiments

• Asymmetric Interaction Region layout and optics to limit synchrotron 
radiation towards the detector 

• Horizontal crossing angle of 30 mrad and crab waist collision scheme

Perfect 4-fold superperiodicity allowing 2 or 4 IPs; 

Synchrotron radiation power 50 MW/beam at all beam energies

Top-up injection scheme for high luminosity 

 Implies booster synchrotron in collider tunnel

M. Hofer ICHEP 2022

SPS Paolo Craievich 



Lattice needs to take into count particle energy loss 
along arc
• Magnet strength depends on position in the arc
• “Tapering”
• Requires the two beams to be in different 

beampipes
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Lattice Tapering

No tapering (note: positive energy offset)

Tapering: adjusting magnetic field to beam energy
B. Härer, A. Doblhammer, and B.J. Holzer, IPAC16, THPOR003



Arc Half-cell Mock-up
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Project aim

• Arc half-cell: most recurrent assembly of mechanical 

hardware in the accelerator (~1500 similar FODO cells in 

the FCC-ee)

• Mock-up → Functional prototype(s) → Pre-series→

Series

• Building a mock-up allows optimizing and testing 

fabrication, integration, installation, assembly, transport, 

maintenance

• Working with demonstrators of the different equipment, 

and/or structures with equivalent volumes, weights, 

stiffness

Arc perspective view, F. Valchkova-GeorgievaF. Carra et al



Optics Correction Strategy

D. Schulte, Future Colliders 2, BND, 2024 57

errors Case Plane 
3 x Analytical

RMS
3 x Mean

RMS/seeds

MQ offset = 150 µm
MB field err = 10−3

MB roll = 300 µrad
BPM offset = 150 µm

MS offset = 150 µm
BPM resolution = 50 µm

Residual orbit [m]
x 188 174

y 192 188

Correctors stengths
[mTm]

x 16 17

y 16 17

➢ Evaluate specifications of the main magnets misalignment of the High Energy Booster arcs cells and of magnets field
error

➢ Definition of the orbit correction strategy and of correctors specifications for the booster 

offset

roll

Motivation

Orbit correction using beam position monitors reading

Improvements and related work to do:
➢ Other methods than SVD - AI ?
➢ Demonstrate full emittance tuning
➢ Study the impact of booster support vibrations on emittance (dynamic 

imperfections)
➢ Study the impact of energy ramp during the booster cycle

Images courtesy T. Charles



RF Cavities
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Model for 2-cell 400 MHz for 
WW and ZH 

• SRF technology building on LHC studies and collaborative R&D (F. Peauger et al.)

o 5-cell 800 MHz cavity without damping built and tested at 2K by Jefferson lab with excellent results

o 400 MHz cavities based on LHC studies of Cu-coated Nb cavities at 4.5K

o Alternative slotted waveguide elliptical cavity with f=600 MHz

• RF placement optimized for infrastructure requirements (F. Valchkova-Georgieva et al)

SWELL 2-cell 600 MHz 
cavity for Z, W, H

We need to replenish energy loss by synchrotron radiation:
• Superconductive RF is most efficient way



Super KEKb
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3 km double ring,
top-up injection 

world’s highest luminosity 
4.7x1034 cm-2s-1 & lowest * 
e+e- collider

• by
* = 0.8 mm demonstrated

• Collision with large crossing angle compensated by sextupoles schemes (as in DAFNE and as foreseen in FCC-ee) 
• Design luminosity not reached so far due to intensity limitation (fast beam losses) in Super KEKB 

Design parameters



FCC-ee Operational Schedule
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5 energy stages
Each year  8 months of operation / 4 months winter shutdown
• hardware upgrades during shutdown

400 MHz 800 MHz

Collider

Booster



FCC-ee Technologies

Cost effective magnets

Two-in-one design of dipoles and 
quadrupoles

Optimised windings to reduce cost and 
power consumption

Optimised RF cavities
Single cells at low energy:
• Low voltage but high current
Four-cell cavities at high energy:
• Low current but high voltage
High frequency at highest energies

Efficient klystrons, based on design ideas for CLIC
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Absorbers intercept radiated photons 
(currently: ~6 m spacing)
• ”winglets” in the plane of the orbit 

to capture photons

Continuous impact of photons can cause 
heating, outgassing and bad vacuum 

Challenging beam screen design 
• Use NEG (Non Evaporable Getter) 

pumps next to photon absorbers – 
pump away emitted gas molecules

D. Schulte, Future Colliders 2, BND, 2024 62

Vacuum and Beamscreen

R. Kersevan
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Electron Cloud

Electrons are set free by ionisation and the 
synchrotron radiation photons

They are accelerated by the positively charged beam 
and hit the beam pipe on the other side

They can produce more than one secondary
• They can also be reflected

This can lead to an exponential build-up
• Limited by the beam current

A high density of electrons at the beam will render it 
unstable
• Bunches give a kick to the cloud that gives a kick 

to the next bunches …

This is a limitation in the LHC

SPS example simulations

Preparation for LHC construction



D. Schulte, Future Colliders 2, BND, 2024 64

Multipacting Limit

L. Sabato, EPFL

Intermediate bunch intensities impose 
tightest requirements (as in the LHC)

Need to study all different magnet configurations,
Diopoles, quadrupoles, sextupoles, …

Two limits:
• Beam stability
• Heat load

Stability threshold



“CDR scheme” “Carli-Bartosik scheme”

Initially do not fill all bunches
Just fill a few to the full level
• Electron cloud build-up reduced due to train length
Then add a few more bunches

H. Bartosik, C. Carli, L. Mether, F. Zimmermann

Potential Solution
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Photon Capture Requirement

F. Yaman, STFC & IYTE 

Need  below 10−4/e+/m

Antechamber with photon stops must absorb 99% of the photons

Scenario Nb [1010] tsep [ns] bunches/train

Case 1 15 25 320

Case 2 21.5 25 280

Case 3 21.5 25 560

Case 4 24.3 25 255

Case 5 43.0 50 280

instability 
threshold



IP Layout
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Need a crossing angle at IP
Cannot bend beams close to IP
Requires additional tunnel

Very short beam lifetime 
requires top-up injection, i.e. 
booster ring



MDI
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Canted-Cosine-Theta magnets

• Elegant 2-layer design for inner quadrupoles

• Working to fit within 100 mrad stay-clear cone

• Prototype built and warm-tested

• Complex integration of SC quadrupoles, 
LumiCal, shielding, diagnostics…

• Mock-up under discussion

Luminometer

Compensating  solenoid

Screening solenoid

Final Focus Quadrupoles

Integration within the detector 

FCC-ee interaction region
• L* =  2.2 m
• The 10 mm central radius is for ± 9 cm from the IP.
• The two symmetric beam pipes with radius of 15 mm 
• are merged at 1.2 m from the IP
• Low impedance vacuum chamber
• Synchrotron Radiation Background and photon dumps



Beamstrahlung also important in FCC-ee

A lattice design challenge

• A few particles lose much energy

• Ring lattice needs large momentum acceptance

• Goal is to maintain particles with 2% in the 
beampipe

A potential damage challenge

• Radiated photon power up to 400 kW

• Hit downstream vacuum chamber in localised 
spot

• Engineering challenge to dispose of heat 
without material damage

• Different solutions under study: solid graphite 
absorber (might break), absorber with flowing 
liquid Pb
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Beamstrahlung

M. Calviani et al.



Timeline Considerations
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2013 
ESPPU

2014 FCC 
study kickoff

2012 Higgs discovery announced

2018 FCC CDR

2025/26
Feasibility proof

2020 
ESPPU

>2045 first
ee collisions

2020 FCCIS 
kickoff

2026/7 
ESPPU

>2030
start tunnel
construction

>2038
machine
installation

today

~2028 approval

>2030 - 37 
element production

>2026 - 30 full 
technical design

2025/26
Financing model
Operation concept

Goal is to start physics 
soon after HL-LHC finishes



Reserve
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FCC-ee

Parameter Z WW ZH tt

Ecm [GeV] 91.2 160 240 365

△E [GeV] 0.0394 0.374 1.89 10.42

I [mA] 1270 137 27 4.9

L [1034 cm-2s-1] 141 20 5 1.25

Beam lifetime [60s] 50 42 100 100

L lifetime [60s] 22 16 14 12
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Electron-positron collider in the FCC-hh tunnel

Operation at different energies

Synchrotron radiation leads to strong dependence of beam 
current and luminosity on energy (100 MW limit)

Short beam lifetime requires 
top-up injection

vertical beam size O(30-70 nm)



Beam Lifetime
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Beam lifetime is short (18-200 minutes)
• Bremsstrahlung
• Beamstrahlung
• …

ipee

ee
nL

I


 



Top-up Injection
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Beam lifetime is short (18-200 minutes)
• Bremsstrahlung
• Beamstrahlung
• …

Have to refill beam permanently
 top-up injection with booster ring

ipee

ee
nL

I


 



Future Lepton Colliders
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