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Gravitational Waves Project

Consider a system of two compact stars (black holes or neutron stars) with masses m1 and
m2 in a circular orbit. Such a system will lose energy by gravitational-wave (GW) emission
and the stars will spiral inwards such that the orbital frequency increases with time following
Kepler’s third law. The emitted gravitational waveform is a “chirp” (similar to the chirping
of birds) with both amplitude and frequency increasing with time. When the stars are widely
separated, the problem can be treated perturbatively. In the leading order post-Newtonian
approximation, the observed GW signal, which is a linear combination of the two polarizations
h+(t) and h×(t), can be computed as:

h(t) = A(t) cosφ(t). (1)

The amplitude A(t) depends on a particular combination of the masses, called the chirp mass
Mc, the instantaneous frequency F (t) of GWs, the luminosity distance dL to the source, and
a geometric factor C that depends on the location of the source in the sky and its orientation
with respect to the detector.

A(t) = C 4M5/3
c π2/3F (t)2/3

dL
. (2)

For simplicity, we shall assume C = 1 which implies that the binary is conveniently oriented
giving circular polarization and the source is located along the direction where the detector
shows maximum directional sensitivity. The chirp mass can be expressed in terms of the total
mass M ≡m1 +m2 and reduced mass µ ≡m1m2/M asMc = µ3/5M2/5. The frequency evolution
F (t) is given by

F (t) = (McF 9
0 )1/8

[(McF0)1/3 − 256F 3
0M2

cπ
8/3 t/5]3/8

(3)

where F0 is the starting frequency of the signal: F0 ≡ F (t = 0). It can be seen that the frequency
sweeps from lower to higher frequencies, until the approximation breaks down at t = tc. The
coalescence time tc can be computed as

tc =
5

256 (πF0)8/3M5/3
c

. (4)

Finally, the phase φ(t) of the GW signal can be expressed as

φ(t) = φ0 − 2(
1

256 (πMcF0)8/3
− t

5Mc

)
5/8

, (5)

where φ0 is the phase at t = 0. Waveforms computed in this lowest order approximation are
sometime called a “Newtonian chirp”.

Units: All expressions in this Section are written in geometrized units, in which G = c = 1.
Mass and distance have units of seconds. Physical units can be obtained by replacing a mass
Mc by GMc/c3, and a distance dL by cdL. In geometrized units, 1M⊙ = 4.92549095 × 10−6 s
and 1pc = 1.0292712503 × 108 s. A sample Newtonian chirp waveform is shown in Fig. 1.
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Figure 1: An example of a “Newtonian chirp”, with chirp massMc = 10M⊙, distance dL = 100
Mpc, initial phase φ0 = 0 and start frequency F0 = 40 Hz.

Matched filter

In the case a known signal h(t) buried in stationary Gaussian, white noise, the optimal technique
for signal extraction is the matched filtering, which involves cross-correlating the data with a
template of the signal. The correlation function between two time series x(t) and ĥ(t) for a
time shift τ is defined as:

R(τ) = ∫
∞

−∞
x(t + τ) ĥ⋆(t)dt. (6)

Above, ⋆ denotes complex conjugation, and ˆh(t) ≡ h(t)/∣∣h∣∣, where the norm ∣∣h∣∣ of the template
is defined by

∣∣h∣∣2 = ∫
tc

0
∣h(t)∣2/σ2 dt,

where σ2 is the variance of the noise. The optimal signal-to-noise ratio (SNR) is obtained when
the template exactly matches with the signal.

SNR = ∣∣h∣∣ (7)

If the SNR is greater than a predetermined threshold (which corresponds to an acceptably
small false alarm probability), a detection can be claimed. Note that the actual detector data
is neither white and is only approximately Gaussian, which makes actual GW detection a
siginificantly more complex exercise than mentioned above!

Part 1. Write a code to generate the Newtonian chirp waveform h(t) for arbitrary values of
Mc, dL, φ0.

Part 2. A data set gw ex data N.dat containing a Newtonian GW signal with dL = 100 Mpc,
φ0 = 0, F0 = 40Hz, but unknownMc is attached. The data d(t) is comprised of the signal h(t)
and Gaussian white noise n(t) of standard deviation σ = 10−21. That is, d(t) = h(t)+n(t). Write
a code to detect the signal using the simple matched filtering method mentioned in the previous
section. Since you don’t know the chirp mass of the signal, choose a grid of chirp masses in the
intervalMc ∈ (8,12)M⊙ with some appropriate grid spacing. This is your “template bank”!
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Working with detector data

For this part, it is recommended to use gwpy. You can download and install the package fol-
lowing the instructions at https://gwpy.github.io/docs/stable/. An excellent set of tutorials on
data analysis with public LIGO-Virgo-KAGRA data is also available there.

Part 3. Download some data stretches for O1, O2, and O3 LIGO data. Compute the power
spectral density of the detector noise, and check how the sensitivities of the instruments are
improving with the observing runs. Note that the sensitivity is often quantified by a single
sumber called the binary neutron star (BNS) range. Can you compute the typical BNS ranges
for the O1, O2, and O3 LIGO instruments?

Part 4. Try to extend the matched filtering algorithm above for real detector data. What are
the associated complications? Note that the algorithm is more appropriate for signals such as
GW151226 than for GW150914. Why?
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