BND Graduate School 2-12 September 2024

# Luminosity measurements at the LHC

Joscha Knolle, Niels Van den Bossche



## Luminosity

• measure of collision rate

 $\frac{\mathrm{d}N}{\mathrm{d}t}$  $(pp \rightarrow X) = \mathcal{L} \cdot \sigma(pp \rightarrow X)$ 

• key accelerator parameter next to center-of-mass energy

luminosity from beam parameters



 difficult to estimate A<sub>luminous</sub> in regular data-taking conditions



### Instantaneous luminosity

- units: "per luminous area per time"
  cm<sup>-2</sup> s<sup>-1</sup> or Hz/µb
- convert to "number of pp collisions per time" by multiplying with total inelastic cross section
  - CMS value: 69.2 mb
- example: 2024 pp data taking
  - peak instantaneous luminosity:
    22.4 Hz/nb
  - pp collision rate: 1550 MHz, or 39 collisions every 25 ns
  - $\circ \quad \sigma(t\bar{t}) = 924 \text{ pb, thus}$ 21 tt events per second

 $(pp \rightarrow X) = \mathcal{L} \cdot \sigma(pp \rightarrow X)$ 



3

## Integrated luminosity

- units: "per luminous area"
  - $\circ$  cm<sup>-2</sup> or fb<sup>-1</sup>
- instantaneous luminosity integrated over time of data taking
- quantifies the amount of data
  - *delivered* by the LHC
  - recorded by the CMS
  - differences: detector problems, trigger deadtime
- example: 2024 pp data taking
  - integrated luminosity so far: 85.6/fb
  - more than 79 million tt events so far



### Importance of luminosity

Instantaneous luminosity:

- significant performance parameter for accelerator
- critical for beam tuning and collision optimization
- essential for trigger system (scale or throttle data throughput)

Integrated luminosity:

- uncertainty on luminosity is systematic uncertainty in (almost) all CMS analyses
- dominant uncertainty in precision cross-section measurements (e.g. Drell-Yan, tt)



first measurement of the tt cross section at 13.6 TeV, <u>JHEP 08 (2023) 204</u>



### CMS luminosity detectors

2 dedicated systems, both at  $z \approx \pm 1.8$ m from the interaction point and radius  $\approx$  6 cm:

- Fast Beam Condition Monitor (**BCM1F**)
  - C-shaped PCBs with 2 rings at each side of CMS, 0 silicon sensors
  - High time resolution (6.25 ns per bin) Ο
- Pixel Luminosity Telescope (**PLT**)
  - 16 total (8 at each side of CMS) 0
  - Fast cluster-counting signal (40 MHz) 0
- "Regular" detectors also used for luminosity measurements:
  - Hadronic Forward (**HF**) calorimeter
    - Steel absorber with quartz fibers Ο
  - and others



BCM1F



#### Van der Meer method

 luminous area from two orthogonal beam-separation scans:



 calibration of detector-specific "visible" cross section:



7

#### **Project overview**

- Measure instantaneous & integrated luminosity for four LHC fills recorded in 2024:
  - a. Analyze short scans performed at the start of each fill to calibrate detector.
  - b. Integrate measured rate and normalize with calibration constant.
- Different groups will use different detectors for the luminosity measurement.
- Additional tasks: study systematic effects and their impact on the precision of the luminosity measurement (per-bunch calibration, beam currents, beam positions).
- Who can provide the most precise luminosity measurement?