Scale Variations for Cross-Section Uncertainties

Nick, David, Tiepolo and Hugues

¹Ghent ²Nikkef ³iihe 12th September 2024

Cross-section are predicted from a Dyson series.

Feynman diagrams: terms in perturbative expansion of scattering matrix:

 $\langle \Psi_f | U | \Psi_i
angle \sim$

(Image adapted from Simone Devoto)

Renormalization introduces an arbitrary scale.

Classical Lagrangian \mathcal{L} yields **unphysical** divergent loop diagrams. Solve by regularizing the integral (dimreg, Λ cut-off)

 $\rightarrow~$ dictates counter terms to renormalize the classical theory:

$$\mathcal{L}_{\mathsf{fund}} = \mathcal{L} + \mathcal{L}_{\mathsf{c.t.}}$$

Renormalizing effectively varies the couplings dependent on arbitrary scale μ_R^2 : $\frac{\mathrm{d}\alpha(\mu^2)}{\mathrm{d}\ln(\mu^2)} = \beta\left(\alpha(\mu^2)\right) \implies \alpha(\mu^2) = \frac{\alpha(\mu_R)^2}{1 - \alpha(\mu_R^2)\beta_0\ln(\mu^2/\mu_0^2)} + \mathcal{O}(\alpha^2)$

QCD is:

- non-perturbative at low E (hadron formation),
- perturbative at high E (hard parton scattering)

LHC collides hadrons...

Image from Simone Devoto

For hadron collisions: factorize the mixed behaviour:

$$\sigma_{\mathsf{had}} = \sum_{ij \; (\mathsf{partons})} \int \, \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{PDF}_i(x_1) \, \mathrm{PDF}_j(x_2) \\ \times \, \sigma_{ij}(x_1 p_1, x_2 p_2)$$

Parton Distribution Functions (Thomson)

For hadron collisions: factorize the mixed behaviour:

$$\sigma_{\mathsf{had}} = \sum_{ij \; (\mathsf{partons})} \int \, \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{PDF}_i(x_1) \, \mathrm{PDF}_j(x_2) \\ \times \, \sigma_{ij}(x_1 p_1, x_2 p_2)$$

 Q^2 -dependent PDF **diverges at UV**. \rightarrow renormalize

(Collinear divergences cancel against PDF renormalization.)

Parton Distribution Functions (Thomson)

For hadron collisions: factorize the mixed behaviour:

$$\sigma_{\mathsf{had}} = \sum_{ij \; (\mathsf{partons})} \int \, \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{PDF}_i(x_1) \, \mathrm{PDF}_j(x_2) \\ \times \, \sigma_{ii}(x_1 p_1, x_2 p_2)$$

$$Q^2$$
-dependent PDF **diverges at UV**.
 \rightarrow renormalize

(Collinear divergences cancel against PDF renormalization.)

Analogous to RGE: arbitrary scale μ_F in perturbative solution of RGE.

Parton Distribution Functions (Thomson)

The choice of μ_R and μ_F matters in computations.

To estimate error, vary the scale μ around a central value μ^{central} and check how cross-section predictions vary: 'theory error'.

7-point scale variation

$$\left\{ \mu_R^{\text{central}} / 2, \ \mu_R^{\text{central}}, \ 2 \ \mu_R^{\text{central}} \right\} \times \left\{ \mu_F^{\text{central}} / 2, \ \mu_F^{\text{central}}, \ 2 \ \mu_F^{\text{central}} \right\}$$
without ($\mu_i^{\text{central}} / 2, \ 2 \mu_j^{\text{central}}$).

To estimate error, vary the scale μ around a central value μ^{central} and check how cross-section predictions vary: 'theory error'.

$$\left\{ \mu_R^{\text{central}} / 2, \ \mu_R^{\text{central}}, \ 2 \ \mu_R^{\text{central}} \right\} \times \left\{ \mu_F^{\text{central}} / 2, \ \mu_F^{\text{central}}, \ 2 \ \mu_F^{\text{central}} \right\}$$
without $(\mu_i^{\text{central}} / 2, \ 2 \mu_j^{\text{central}}).$

What scale μ^{central} to use??

Event Overview

Using scale variations to represent our theoretical uncertainty.

▶ We find that HT/2 proves a more realistic representation of the theoretical uncertainty.

you don't compute theoretical uncertainties you estimate them! Simone Devoto