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Introduction and motivation

2

• 1995: Discovery of the top quark 

• 2012: Discovery of the Higgs boson - completed the puzzle of the standard model (SM)

• Now, over a decade later: 
• Tremendous progress in understanding the Higgs boson and the top quark, with masses 

measured with per-mil precision 

• Cross sections for many standard model processes measured with precision down to a few 
percent 

• But not all is solved, some fundamental questions and issues remain (fermion masses added 
ad-hoc via Yukawa couplings, mass hierarchy of neutrinos, dark matter, …)

Look for new physics directly 
- search for new particles predicted by 

theories (e.g. SUSY, ALPs, LQs, …) 
- explore exotic signatures that may 

have escaped detection so far

• What more can we do?

40x
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Top quark physics
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• Top quark physics is a central part of the LHC programme. But why? 

• The top quark: 

• is the heaviest particle in the SM (Yukawa coupling ~1)  

• is the only quark that decays before hadronization - prime opportunity to measure 
bare quark properties 

• mass is essential for electroweak vacuum stability 

Based on PDG 2018.  
Black lines are 1, 2 and 3  bandsσ

40x



Top quark physics

6

• Top quark physics is a central part of the LHC programme. But why? 

• The top quark: 

• is the heaviest particle in the SM (Yukawa coupling ~1)  

• is the only quark that decays before hadronization - prime opportunity to measure 
bare quark properties 

• mass is essential for electroweak vacuum stability 

• Tops are abundantly produced at the LHC, mainly in the form of top quark-antiquark pairs 

• With >100 million top quark pairs produced at the LHC, we can do a lot, from precision 
physics to spotting rare processes

 

at 13 TeV

σ = 832 pb

Based on PDG 2018.  
Black lines are 1, 2 and 3  bandsσ
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Top quark physics - still making the news after 30 years
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Associated top quark production
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•  cross section ~103 pb 

•  associated with other particles (bosons but not only) is much 
rarer, ~0.01-1 pb 

• Interesting to study because of sensitivity to top EW and 
Yukawa couplings 

• With the very large datasets of LHC, we entered the 
precision era for these processes 

•  is a special example 

• “All things emit light all the time” 

• When we talk about , we have to impose a minimum 
photon momentum and isolation - “fiducial” cross sections 

• Relatively large cross section - can do precision 
measurements and even go differential

tt̄

tt̄

tt̄γ

tt̄γ

Physics Reports: arxiv.2405.18661

https://arxiv.org/abs/2405.18661


Reminder - top quark decays
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• Top decays almost exclusively to a W boson and a b quark 

• b quarks hadronise forming jets, which can be identified as b jets

dilepton decay channel is the rarest, but 
- lowest contribution from backgrounds 
- Great resolution for lepton reconstruction in CMS

hadronic jet

hadronic jetb

b fully 
hadronic

lepton+jetsdilepton

•  events are characterised by W decay possibilitiestt̄



The  processtt̄γ
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• : production of  in association with a hard (here >20 GeV) and isolated photon 

• Gives direct access to the  coupling  precision test of the SM 

• Differential measurements are sensitive to potential new physics effects at the tails of the distributions 

• Experimentally, we cannot distinguish the photon origin, so we must consider all possible origins - the top quarks, 
initial state quarks, and the top decay products

tt̄γ tt̄

tγ →

b

b
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ℓ+
ν

ν
γt

t

W−

W+
b

b
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ℓ+
ν

ν

γ t
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• Events with photons from hadron decays are not considered as tt̄γ
 


at 13 TeV in  channel

σ ∼ 2 pb

ℓℓ
>200k events 
in Run 2

new 
physics?

EmaxLHC
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Existing measurements and why do we still care
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Inclusive and differential 
measurements by ATLAS and 
CMS exist


(including EFT interpretations)

• Differential measurements published with lepton and photon variables 

• Available differential measurements did not contain top quark properties, which are sensitive to modelling and t  coupling 

• Ratio  (inclusive and differential) opens the way to extra precision, due to cancellation of systematic uncertainties, but had 
never been measured

γ

tt̄γ/tt̄



Seeing  in CMStt̄γ
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Seeing  in CMStt̄γ
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• Layered structure for particle identification 

• Good photon resolution essential to 
reconstruct  events 

• Electrons and neutral hadrons may be 
misidentified as photons

tt̄γ

✓ Information from all sub 
detectors combined to 
reconstruct particle 
candidates
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• Layered structure for particle identification 

• Good photon resolution essencial to 
reconstruct  events 

• Electrons and neutral hadrons may be 
misidentified as photons

tt̄γ

✓ Information from all sub 
detectors combined to 
reconstruct particle 
candidates

 event candidate 
( +jets)
tt̄γ
ℓ



The new CMS analysis in a nutshell
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• Use data collected in CMS during the full Run 2 (2016-2018), corresponding to 138 fb-1 

• Look at the dilepton decay channel

Differential 
ratios

Inclusive 
/  ratiott̄γ tt̄

Differential 
 cross 

sections*
tt̄γDefine:

MC

Nonprompt  background 
estimation

γ

Event 
selection

DATA 
(CMS Run 2)

Simulation  
(MC)

DATA

 regiontt̄

control regions

signal region U
N
F
O
L
D
I
N
G

*and a top quark charge asymmetry study

arXiv:2511.01995

Submitted to JHEP

https://arxiv.org/abs/2511.01995


Selecting  eventstt̄γ
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≥2 opposite charge leptons 

off Z peak                              
(for same flavour leptons)

=1 photon 

well separated from leptons


M(ℓℓ𝛄) off Z peak

(for same flavour leptons)

≥2 jets, ≥1 b tag 

well separated from photons and leptons

b tagging using deep neural network algorithm

Reconstruction of  
(for top-related variables)


Event must pass kinematic 
reconstruction of 

tt̄

tt̄



Background estimation
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“Fake” photon  
backgrounds

Real photon backgrounds

● Largest source is single top quark in association with a photon -   

✓ Treated with dedicated simulation at NLO - first time!
tWγ

example diagram:

Two main types of background contributions:

● Important background in ee and  final states -   

✓ Handled with control region 

✓ M(ℓℓ𝛄) cut inverted 

μμ Zγ

● Estimated using MC simulations

● Real photons from 
pileup or hadron 
decays 

● Misreconstructed 
electrons or jets 

✓ Simulation has large 
uncertainties 

✓ Estimated from 
data - next slides



Background estimation

18

“Fake” photon  
backgrounds

Real photon backgrounds

● Largest source is single top quark in association with a photon -   

✓ Treated with dedicated simulation at NLO - first time!
tWγ

example diagram:

Two main types of background contributions:

● Important background in ee and  final states -   

✓ Handled with control region 

✓ M(ℓℓ𝛄) cut inverted 

μμ Zγ

● Estimated using MC simulations

● Real photons from 
pileup or hadron 
decays 

● Misreconstructed 
electrons or jets 

✓ Simulation has large 
uncertainties 

✓ Estimated from 
data - next slides

0.5

1

1.5

2

2.5

3

310×

E
ve

n
ts

 /
 9

 G
e
V

60 80 100 120 140 160 180 200

m(ℓ ℓ γ)[GeV]

0

0.5

1

1.5

2

D
a
ta

 /
 P

re
d
.

Data t̄tγ decay

t̄tγ prod. Nonprompt

tWγ Zγ  (FSR)

Zγ  (ISR) Others

Prefit unc.

CMS  (13 TeV)-1138 fb



Background estimation
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Nonprompt photon estimation
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● Define A, B, C, D regions 

● Compute C/D ratio from data = fake rate

signal region

Ich
σiηiη

✓ Poor isolation from charged particles around 

✓ Wide electromagnetic showers in ECAL

● How to identify nonprompt/fake photons?

almost 
uncorrelated

nonprompt in signal region = nonprompt in B ×
nonprompt in C
nonprompt in D
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Private work ( CMS Simulation)

Barrel photons

real fake
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Some words about signal modelling…

21

t  process contains: 
- t  production: photons from ISR or off-shell top quarks  
- t  decay: photons emitted from decay products

t̄γ
t̄γ
t̄γ

NLO in QCD

LO in QCD * correction factor

• It is impossible with current generators to simulate the 
whole process at once at NLO in QCD 

• We need to “stitch” two samples: 
• Production at NLO 
• Decay at LO, multiplied by a correction factor
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Comparison data/predictions

22

• Generally good description for all variables 

• t  production ~ 40% of signal contributiont̄γ
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Inclusive cross section measurements of tt̄γ
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• Measuring fiducial t  cross section (production+decay) and also the 
production component separately 

• Fit to min.  including all systematic uncertainties 

• Powerful variable to separate production and decay

t̄γ

ΔR(γ, ℓ)

Fiducial phase space Photon Leptons Jets
Number ==1 >=2 >=2, >=1 b
pT (GeV) >20 >15 >30

<2.5 <2.5 <2.4

Others Not from hadrons Not from hadrons, 
isolated from photons

Isolated from photons 
and leptons

|η |
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• Measure   σ(t ) = 137 ± 3 (stat) ± 7 (syst) fb (6%) 

• In agreement with prediction of 126 ± 19 fb (MadGraph5_aMC@NLO) 

• Limited by systematic uncertainties, mainly normalisation of the nonprompt 
background,  identification, fraction of the t  decay component, jet and b 
tagging

t̄γ

γ t̄γ



Differential cross section measurements of tt̄γ
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• Choose observables to measure:  
•  of top quark; , ,   - new, sensitive to photon origin and new physics 
•  of leading lepton and photon,  - cross-check with previous CMS analyses 

• Objects defined at  

• Parton level (intermediate particles before showering and hadronization, broad phase space) 

• Particle level (final state objects, phase space mimics detector acceptance) 

• Top/t  variables are being measured for the first time in this process 

• Normalised and absolute cross sections measured for production+decay 

pT ΔR(γ, tt̄) min. ΔR(γ, t) m(tt̄)
pT Δϕ(ℓ, ℓ′￼)

t̄



Differential cross section measurements of tt̄γ
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true 
spectrum

reconstructed 
spectrum
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example:• How do we make differential measurements? 

• Build response matrices with reconstructed vs. generated quantities 

• Decide on binning based on purity and stability (how diagonal is the 
matrix?) 

• Build signal templates for each bin at generator-level   

• Perform maximum likelihood fit to distributions in the signal region 
and control region simultaneously 

• All systematic uncertainties and respective correlations handled 
directly in the fit 

• Extract signal strength modifiers for each gen.-level bin μi =
σi

σexp
i



Differential cross section measurements of tt̄γ
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Momenta well described by simulation, angular variables show some trends. 
Very precise results, down to 4% unc. in some bins

1−10

1

10

d
σ
t̄
t
γ
/d
p
T
(
γ
)
[
f
b
/
G
e
V
]

Data with total unc.

Stat. unc.

MG5 NLO prod. +

 = 6/5
dof

2
χ dec., γt MG5 LO t

MG5 NLO prod. +

 = 31/5
dof

2χ dec., t PH+Py8 t

NLO QCD fixed order pred., 

 = 15/5
dof

2χ

CMS  (13 TeV)-1138 fb

20 40 60 80 100 120 140 160 180
Particle level p

T
(γ ) [GeV]

1

1.5

P
re

d
. 

/ 
D

a
ta

0

2

4

6

8

10

12

d
σ
t̄
t
γ
/d
(
p
T
(
t
1
)
)
[
f
b
/
G
e
V
]

Data with total unc.

Stat. unc.

 = 4/4
dof

2
χ dec., γtMG5 NLO prod. + MG5 LO t

 = 37/4
dof

2χ dec., tMG5 NLO prod. + PH+Py8 t

CMS  (13 TeV)-1138 fb

0 100 200 300 400 500 600
Parton level p

T
(t
1
) [GeV]

0.5

1

1.5

P
re

d
. 

/ 
D

a
ta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3
10×

d
σ
t̄
t
γ
/d
(
m
in
.
∆
R
(
γ
,
t
)
)
[
f
b
]

Data with total unc.

Stat. unc.

 = 12/3
dof

2
χ dec., γtMG5 NLO prod. + MG5 LO t

 = 51/3
dof

2χ dec., tMG5 NLO prod. + PH+Py8 t

CMS  (13 TeV)-1138 fb

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Parton level min. ∆R(γ , t)

0.5

1

1.5

2

2.5

P
re

d
. 

/ 
D

a
ta

NLO t prod + LO ME t decayt̄γ t̄γ NLO t prod + NLO t  PS decayt̄γ t̄• Compare to: 

•

Fixed-order prediction



Differential cross section measurements of t  - normalizedt̄γ
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Normalized distributions show very good agreement 
for both predictions, except for angular variables

• Compare to: 

•

Most likely reflects difficulties in modelling, a 
complete NLO model would allow for more 
consistent interpretation
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Top quark charge asymmetry using t  eventst̄γ

● Top quark charge asymmetry (Ac) in  production: anisotropy in the 
angular distributions of the final-state top quark and antiquark 

○ Top quark preferentially produced in the direction of incoming 
quark 

○ Anti-top quarks scatter more centrally (lower rapidity) than top 
quarks

tt̄

Δ|y|

SM prediction at NLO in QCD for : 0.6%tt̄

● Effect in  is enhanced 

○  production mode is a larger fraction 

○ Asymmetry already at LO in , as opposed to NLO in 

tt̄γ

qq̄

tt̄γ tt̄

Total asymmetry for : [-0.5%,-2%] depending on kinematics tt̄γ
28
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Caused by the 
interference of 
diagrams like:
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Top quark charge asymmetry using t  eventst̄γ
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Result: 
AC=−0.003±0.029

Result: 
AC=−0.012±0.042

Compatible with the SM and 
with no-asymmetry scenarios

Phys. Lett. B 843 
(2023) 137848

● Fit to  between top quarks 

● Extract charge asymmetry directly 

● Heavily limited by statistical 
uncertainty (we are trying to 
measure a very small effect)

Δ |y |



First ever measurement of the t /t  ratio at the LHCt̄γ t̄
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• Correlations between  and  depend on the phase spacett̄ tt̄γ

differential

○ Differential ratio measurements give additional sensitivity to potential 
deviations from SM 

○ Theory papers suggest variables with larger variation of the ratio 
○ Sensitive to modelling aspects

arxiv:1809.08562

arxiv:1603.08911v2

inclusive

○  and  are both QCD production - many systematics cancel out 

○ Can be used to set limits on Effective Field Theory operators

tt̄ tt̄γ

• Measuring ratios between cross sections allows achieving higher precision

https://arxiv.org/abs/1809.08562
https://arxiv.org/pdf/1603.08911v2.pdf


• The ratio is computed as:

First ever measurement of the t /t  ratio at the LHCt̄γ t̄
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0 gen 𝛄 

1 gen 𝛄 

SR  
(≥1 reco 𝛾)

Events

0 gen 𝛄 

1 gen 𝛄 

tt region  
(=0 reco 𝛾)

• A  (0-photon) region is built, in addition to the SR, by inverting cut on 1 reconstructed photontt̄ =

• 0-photon region has many events - allows for measuring  precisely  

• It is possible to write the  and  signal strengths as a function of R 

• Extract R directly from the fit - direct handling of all correlations 
between systematic uncertainties

tt̄

tt̄ tt̄γ

Rγ =
σtt̄,=1γ

σtt̄,=0γ + σtt̄,=1γ



First ever measurement of the t /t  ratio at the LHCt̄γ t̄
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• Result:

• Limited by systematic 
uncertainties, mainly photon 
identification, nonprompt 
photon, DY and Z+  
backgrounds, and modelling 

• t  normalization measured to 
be compatible with NNLO QCD 
prediction with 2% uncertainty

γ

t̄



The t /t  ratio - also differential!t̄γ t̄
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Compatible with SM predictions!
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What have we learned?
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• Precision in inclusive and different cross sections between 4-10% depending on exact phase space - very 
precise measurements, all in good agreement with the SM 

• New modelling strategy improves agreement with respect to previous measurements that relied on 
LO simulations 

• ALTAS and CMS have performed Effective Field Theory interpretations which allow to constrain new 
physics scenarios modifying the  couplingttγ



Summary
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• Presented the recent CMS results on  production using Run 2 data 
• Inclusive and differential cross sections 

• Top quark charge asymmetry 

• Inclusive and differential ratio to  cross sections 

• Very precise measurements, in good agreement with the SM predictions

tt̄γ

tt̄

Outlook:
• Useful for EFT interpretations (some already exist, more can be done in the future, especially combining 

several processes) 

• Differential measurements (of cross sections and ratios) still mostly limited by statistical uncertainties.                     
 Very large dataset of Run 3 can bring improved precision! 

• Improvements in the modelling, in particular full NLO samples, would allow for much clearer interpretation

→

Thank you!Thank you
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BACKUP
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May2025
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Previous ttɣ measurements
● Already measured by CMS and ATLAS 

● Inclusive and differential measurements as a function of lepton and photon kinematic observables exist

40

example from [1]:
Note: 
• Inclusive cross 

section slightly higher 
than prediction 

• Imperfect description 
of photon origin 

● Not measured before at the LHC: cross section vs. top quark and  variables, ratio between  and tt̄ tt̄γ tt̄

- focus of this paper (+ improved modelling strategy)

https://www.google.com/url?q=https://arxiv.org/abs/2201.07301&sa=D&source=editors&ust=1695825023291872&usg=AOvVaw1eTzEDCczhILoUusNSx4yU
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 and  cross section calculationstt̄ tt̄γ

●  cross section computed using the TOP++ framework by Czakon, Mitov et al.  
● Computed at NLO in QCD with NLL resummation

tt̄

●  total cross section computed using Madgraph aMC@NLO to simulate two samples: 
• 2->3 , removing hard isolated photons from FSR. Remain photons from ISR, off-shell tops 
• 2->2 , removing hard isolated photons from ISR. Remain photons from FSR, on-shell tops 

• Distribution of photon pT compared to LO sample, and since it was compatible, k-factor derived

tt̄γ
pp → tt̄γ
pp → tt̄

only this is simulated: this is tWgamma: this is not simulated, but 
supposed to be <0.5%1:

1: computed in arXiv 1912.09999v2

How about non-resonant tops?
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● Small sample simulated at NLO with aMC@NLO containing 
photons from production, but not from top decay 

● Photons from decay present in tW NLO sample 

● Sum between two NLO samples compared with LO sample 
which contains all photon origins 

● Distributions match 
● Inclusive k-factor is derived

Simulating  at LOtWγ
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● Small  sample simulated at next-to-leading order (NLO) with aMC@NLO 

● Final state with  appears at NLO 

● The same final state can be the result of a resonant LO  production

tWγ
tWbγ

tt̄γ

Simulating  at NLOtWγ

● The latter do not belong to  production but to  and thus need to be removed 

● Diagram removal is implemented using the DR2 scheme (same as in  evidence paper from our 
group)

tWγ tt̄γ
tWZ

γ

γ
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Simulating  at NLOtWγ

● NLO with real emission: p + p → t + W− + b̄ + γ

can be resonant t̄

● Amplitude:  

● Matrix element:  

𝒜pp→tW−γ = 𝒜non−resonant
pp→tW−γ + 𝒜resonant

pp→tW−γ

|𝒜pp→tW−γ |2 = |𝒜non−resonant
pp→tW−γ |2 + |𝒜resonant

pp→tW−γ |2 + 2ℛ(𝒜non−resonant
pp→tW−γ 𝒜resonant †

pp→tW−γ)

DR2 interference terms are kept
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Photon origins in tt̄γ
[arXiV:1912.09999v2]
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Nonprompt photon contribution



Nonprompt photon estimation (1)
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for ABCD method, must be mostly uncorrelated 
- they are, but residual correlations exist, especially in endcap
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Algorithm for  reconstructiontt̄

• Algebraic method is used: six kinematics constraints applied to determine the 4-momentum of the 2 neutrinos 

• Equations solved analytically with a maximum of 4 solutions 

• To improve reconstruction efficiency, energies and directions of jets and leptons are smeared according to detector resolution

• Based on method by Sonnenschein 
[Phys.Rev.D73:054015,2006]



Unfolding
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X

true spectrum

X

reconstructed 
spectrum

detector effects 
acceptance 
efficiency

• Need to recover true spectrum (unfolding) 

• Corresponds to inverting the response matrix (entries are reco. vs gen. quantities in bins 1,…,i,…N) 

• Can be done by subtracting the backgrounds and inverting the matrix - classical method, usually 
implemented in TUnfold 

• Can also be done by doing a simultaneous maximum-likelihood fit to N signal templates, each defined by 
requiring that the event is in the ith generator-level bin.  

✓ Background template normalisations are included as nuisance parameters, as well as all relevant sources of 
experimental and systematic uncertainties

?

[arXiv:1205.6201]
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Maximum likelihood fit

μ =
σtt̄γ

σSM
tt̄γ

is the parameter of interest (POI).

Probability of observing  events when  are expected is ni λi(μ) P(ni |μ) =
λi(μ)e−λi(μ)

ni!

We expect λi(μ) = μ·si +
Nbkg

∑
j

bi,j events in bin i, where

without systematic uncs.

Likelihood (probability of seeing the observed data for a given ):μ ℒ(n |μ) =
N

∏
i=1

λi(μ)e−λi(μ)

ni!

With M systematic uncertainties included as nuisance parameters :Θ ℒ(n |μ) =
N

∏
i=1

λi(μ, Θ)e−λi(μ,Θ)

ni!
·

M

∏
m=1

f(Θm)

p.d.f. constraining each NP, 
typically Gaussian

maximised, by minimising -2 log( )ℒ

qμ =
ℒ(n |μ, Θ̂μ)

ℒ(n | ̂μ, Θ̂)

global maximum

maximum for each μ

used to quantify how compatible the observed data is with a given hypothesis

Profiled likelihood ratio:
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Charge asymmetry
● In : caused by interference between NLO  diagramstt̄ qq̄

 (LO):tt̄γ

●  fusion diagrams represent 79% (88%) of  ( ) 

● Interference with photon diagrams bring additional 
(negative) contribution

gg tt̄γ tt̄

● In : caused by interference between NLO in QCD  diagrams and 
additionally LO diagrams with photons from initial state quarks or tops

tt̄γ qq̄

Why measure it in ?tt̄γ
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 limits on EFT by CMStt̄γ
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SMEFT with /tt̄γ tt̄
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SMEFT with  and tt̄γ tt̄Z
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SMEFT with top quarks
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CMS, tZq/t t̄Z [1] 138 fb°1

CMS, t t̄∞ [2] 137 fb°1

CMS, t t̄Z [3] 78 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ + boosted Z/H [5] 138 fb°1

CMS, t t̄∞ [2] 137 fb°1

CMS, t t̄Z [3] 78 fb°1

ATLAS, t t̄Z [6] 36 fb°1

CMS, tZq/t t̄Z [1] 138 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ + boosted Z/H [5] 138 fb°1

ATLAS, t t̄Z [6] 36 fb°1

ATLAS, Top polarization [7] 139 fb°1

ATLAS+CMS, W helicity [8] 20+20 fb°1

CMS, t t̄ and tW , BSM search [9] 36 fb°1

ATLAS, Top polarization [7] 139 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ + boosted Z/H [5] 138 fb°1

ATLAS, t t̄ ` + jets boosted [10] 139 fb°1

CMS, t t̄ + Z/W/H, tZq,tHq [4] 42 fb°1

CMS, t t̄ and tW , BSM search [9] 36 fb°1

ATLAS, t t̄ rapidity asymmetry [11] 139 fb°1

CMS, t t̄ dilepton [12] 36 fb°1

CMS, t t̄ spin correlations [13] 36 fb°1

CMS, t t̄ spin correlations [13] 36 fb°1

EFT formalism is employed at different levels of
experimental analyses

ATLAS+CMS Preliminary
LHCtopWG

November 2022

Following arXiv:1802.07237
Dimension 6 operators C̃i ¥ Ci/§2

(Top) quark - vector boson operators - Individual limits
ATLAS ATLAS+CMS CMS


