

Using the W as a Standard Candle to Reach the Top:

Calibrating Energy Correlator Based Top Mass Measurements

David Marckx 23/02/2024 UGent

stop me if I go to fast, slides are dense at times

also

d.Marcus.E.Marckx@cern.ch

my choice of pizza is expertly hidden in the presentation, congrats if you can find it!

overview

- 1. why we care about the top mass EW vacuum stability
- 2. why it's hard to measure at the LHC
- 3. jet substructure methods jet grooming and EECs
- 4. the new method

5. feasibility and conclusions

Why care about top mass: stability of the EW vacuum

- We have our Higgs potential
- completely related:

(one can think of more reasons but let's focus on the one the authors focus on)

- We have our Higgs potential
- But if you look at higher scales, the effective potential changes
 - depends on all parameters of the SM
 - Higgs self-interaction (λ) and top mass
 - BSM physics

- We have our Higgs potential
- But if you look at higher scales, the effective potential changes
 - depends on all parameters of the SM
 - Higgs self-interaction (λ) and top mass
 - BSM physics
- Current measurements indicate we are **metastable at** higher scales

- We have our Higgs potential
- But if you look at higher scales, the effective potential changes
 - depends on all parameters of the SM Ο
 - Higgs self-interaction and top mass Ο
 - **BSM** physics Ο
- Current measurements indicate we are metastable at higher scales
- Vacuum has to remain stable until new physics scale is reached (otherwise cosmologists become very, very sad)
- High Hubble rates during **inflation** and high temperatures during **reheating**: why did we not end in the real vacuum? **GHEN**¹

Universe would be a ticking timebomb eh! UNIVERSIOY

cosmologists when you ask what the EW vacuum instability means:

 $\overline{\mathbb{IIII}}$

- so we don't want to be metastable
- measuring top mass = measuring upper bound of scale of new physics
 - red lines = scale of breakdown (GeV)
- many other reasons

light top

heavy top

GHENT UNIVERSITY

so how do we measure the top mass?

(one can think of more reasons but let's focus on the one the authors focus on)

David.Marcus.E.Marckx@cern.ch

Top mass: measuring at a ee collider

click here to read from someone who does know what this all means

0000 (t)0000

 $m_h < R < m_r$

0000 t 0000

m, < R < m.

R, # +

m

 $n_{t} = 5$

 m_b $n_b = 4$

 $m_c = 3$

AOCD

000 000

mpole

 $n_t + 1 = 6$ $\mu > m_t$

- not a physically observable particle, what even is the top mass?
 - m_t^{MC} is assumed to describe the pole mass (mass from renormalization scheme) \overline{p}
 - mass of "free" top quark with all self energies absorbed (parton level)
 - already point of discussion
- every QCD observable σ however also has nonperturbative corrections:

$$\sigma^{\exp} = \hat{\sigma}(Q, m_t^X, \alpha_s(\mu), \mu; \delta m^X) + \sigma^{\text{NP}}(Q, \Lambda_{\text{QCD}}).$$

dependence only disappears for infinite order

- for ee, top mass can be extracted from e.g. top pair production xsec in ee annihilation
 - color-singlet (no difficult color neutralization)
 - no QCD ISR

0

GHENT UNIVERSITY

- almost no corrections due to width
- non-perturbative QCD corrections are minimal

so m^{MC} and the experimental observable should describe the pole mass well with minimal non-perturbative corrections

 $m_t(\overline{m}_t)$

 $\overline{m}_t(\mu)$

 $\mu > m_t$

Top mass: measuring at a pp collider

- for pp collider very difficult
 - UE 0
 - protons give nonsinglet color configurations Ο
 - non perturbative effects, collinear splitting and IR radiation Ο
 - not perfectly modeled until now

 $\sigma^{\exp} = \hat{\sigma}(Q, m_t^X, \alpha_s(\mu), \mu; \delta m^X) + \sigma^{NP}(Q, \Lambda_{OCD}).$

this is a much bigger issue here

Me : mom can we have

at home :

Mom : no, we have

click here to read from someone who

does know what this all means

at home

Top mass: measuring at a pp collider

click here to read from someone who does know what this all means

- for pp collider very difficult
 - UE
 - protons give nonsinglet color configurations
 - o non perturbative effects, collinear splitting and IR radiation
 - not perfectly modeled until now

 $\sigma^{\exp} = \hat{\sigma}(Q, m_t^X, \alpha_s(\mu), \mu; \delta m^X) + \sigma^{\text{NP}}(Q, \Lambda_{\text{QCD}}).$

 effects of QCD and electroweak quantum fluctuations have to be covered by PS

(probably not safe to assume that this is well done)

• Can we find a measurement method that is less affected by the non-pert. part and can be used to infer the pole mass with <u>less uncertainties</u>?

GHENT UNIVERSITY

Top mass: measuring at a pp collider

- for pp collider very difficult
 - 0
 - Ο
 - Ο

 $\sigma^{\exp} = \hat{\sigma}(Q, m_t^X, \alpha_s(\mu), \mu; \delta m^X) + \sigma^{NP}(Q, \Lambda_{OCD}).$

effects of QCD and electroweak guantum fluctuations Ο have to be covered by PS

(probably not safe to assume that this is well done)

- Can we find a measurement method that is less affected Ο by the non-pert. part and can be used to infer the pole mass?
 - two examples using jet substructure, 4 tops is not one of them

David.Marcus.E.Marckx@cern.ch

Top mass using jet substructure: groomed_mass

- using jet masses is a bad idea
 - not IRC safe
 - UE
 - o doesn't match parton level at all, swamped by non-pert. QCD
- jet grooming
 - soft drop or PN regressor
 - not perfectly non-pert. safe, UE is still background

• understanding the description of non-perturbative corrections for groomed jets. [26, 30, 31]

Top mass using jet substructure: energy correlators

- boosted top jet: 3 body decay, collinear radiation
 - define three-point correlator (EEEC) 0
 - ζ_{ij} is "angle" between PF candidates in jet, $\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2$, $\zeta_{12/23/31}$ are specific angles you choose $(1 \cos(\theta_{ij}))/2$ 0
 - you scan a triangle over the jet and see how well the energy profile matches that triangle 0
 - n controls the weight you put on soft PFs 0

GHENT

Top mass using jet substructure: energy correlators

- 3 body decay, <u>collinear and soft</u> radiation
 - here we take $\zeta = \zeta 12 = \zeta 23 = \zeta 13$ (assume perfect triangular decay)
 - to reduce sensitivity to non-pert. part, we can focus on hard decay angles (not collinear)
 - and look at higher powers of n (harder radiation)
 - "size sensitive subjettiness scan", how big is triangle? (important for later: can also be shape sensitive if $\zeta_{12} \neq \zeta_{23} \neq \zeta_{13}$)
 - sensitive to the top mass

ttW

- **Problem**: location of peak also depends on pt of the jets
 - \circ you need a perfect jet pt description to extract the top mass
 - o sensitive to PDFs, large experimental uncertainties, large non-pert. corrections...
 - **can we do better**? Maybe we can use the W in the top decay to calibrate our method

GHENT UNIVERSITY

use the W as a standard candle: first goal

- since W is not a QCD object, we know its mass very precisely from I nu decays
 - if we can extract W angles and top angles at the same time, we can calculate ζ_t/ζ_w
 - maybe from this we can extract m_t/m_w without need for jet pt info?
 - we define a new observable similar to EECs:

$$T(\zeta, \zeta_S, \zeta_A) \equiv \sum_{\substack{\text{hadrons}\\i,j,k}} \int d\zeta_{ijk} \frac{p_{T,i} p_{T,j} p_{T,k}}{(p_{T,jet})^3} \frac{d^3 \sigma_{i,j,k}}{d\zeta_{ijk}}$$
$$\times \Theta(\zeta_{ij} \ge \zeta_{jk} \ge \zeta_{ki} > \zeta_S) \ \delta\left(\zeta - \frac{(\sqrt{\zeta_{ij}} + \sqrt{\zeta_{jk}})^2}{2}\right)$$
$$\times \Theta\left(\zeta_A > (\sqrt{\zeta_{ij}} - \sqrt{\zeta_{jk}})^2\right). \tag{1}$$

- ζ, ζ_s and ζ_A are reparametrisations of the angles (overall scale, smallest allowed "angle", max asymmetry between two largest "angles")
- pt's act as energy weighting (IR safety)
- small ζ_s basically gives 2-point-like correlator, larger ζ_s becomes very similar to original symmetric EEC

Heavisides, less delta functions!

GHENT

use the W as a standard candle: first goal

• large ζ_s peak for angular scale of top decay

use the W as a standard candle: first goal

INIVERSITY simultaneously resolve the W and top inside a single jet without performing any reclustering!!!

18

use the W as a standard candle: second goal

- So we can extract ζ_t / ζ_w at the same time
- how do we extract the mass ratio from this any better?
 - jet pt boosts top and W angular scale the same way
 - no jet pt sensitivity _____
 - parton level, hadron level, MPI, PDF effects
- ratio cancels a lot of the sensitivity to this modeling!
- we can safely use the peaks to extract the mass ratio!

~100MeV compared to 1GeV for groomed jet mass 19

David.Marcus.E.Marckx@cern.ch

use the W as a standard candle: last hurdle

- extracting ζ_{w} is difficult
 - unlike top, the width doesn't protect from non-pert. corrections
 - how do we deal with non-pert. corrections?

Let's divide again!

define
$$W(\zeta) \equiv T(\zeta, 0, \infty)$$
 (2)
 $\times \left(\sum_{\substack{\text{hadrons}\\i,j}} \int d\zeta_{ij} \frac{p_{T,i} p_{T,j}}{(p_{T,jet})^2} \frac{d\sigma_{i,j}}{d\zeta_{ij}} \delta(\zeta - \zeta_{ij})\right)^{-1}.$

- divide by standard two-point EEC
 - both sensitive to same effects Ο
 - cancels leading non-perturbative effects Ο
 - peak agrees well for non-perturbative effects Ο
 - peak you get here is still ζ_{w} Ο

GHEN

use the W as a standard candle: gameplan

- 1. measure $T(\zeta, \zeta_S, \zeta_A)$ for top region to extract ζ_t , but this has pt dependence as
- 2. measure $W(\zeta)$ to extract ζ_W with minimal non-pert. uncertainties
- 3. define the ratio ζ_t / ζ_w , without pt dependence
- 4. extract from this m_t/m_w without any need for jet pt
- 5. we know m_w so we know m_t !!!
- 6. commit tax fraud (covered in next presentation)

ttW

David.Marcus.E.Marckx@cern.ch

Feasibility and conclusions

more details in companion paper to come small feasibility study:

- stats from CMS Run 2 top mass measurement
- 300 and 3000fb⁻¹ assumed
- cumulant of statistical errors
- reasonable variation in the polynomial degree
- variation of the peak fit range by ± 10%

conclusions

- complex scheme to bypass several non-pert. issues
- uncertainty seems not super competitive but doesn't have as many doubts?
- ____investigate using charged particles only to calculate EECs? lower stats, higher angular accuracy

