

CLUSTER OF EXCELLENCE

Bundesministerium für Bildung und Forschung

Top routes to the Higgs sector: A journey from the begin to the end of the Universe

Matthias Schröder (Universität Hamburg) Universiteit Gent seminar | April 30, 2024

Fundamental question:

If the electron was massless, there would be no stable atoms!

April 30, 2024

Interaction with Higgs field $\phi \rightarrow$ particle mass

April 30, 2024

Universe at minimum of $V(\phi)$

Excitation of ϕ around minimum \rightarrow **Higgs boson H** (necessary consequence!)

April 30, 2024

The Higgs boson

Scalar particle (spin 0, CP even)

Couples in a unique way to other particles

- to bosons $\propto m_V^2$
- to fermions $\propto m_{\rm f}$

Once Higgs-boson mass is known:

All other properties and couplings precisely defined

The top-Higgs coupling is special!

Special: y_t ≈ 1 (only "natural" quark mass)
By far the largest Higgs-fermion coupling

Strong impact on SM physics

e.g. dominant contributions to quantum corrections to the Higgs-boson mass and self-coulping

Decides (in part) if the vacuum is stable! The end of the Universe as we know it?

How to measure the top-Higgs coupling?

Loop-induced single Higgs processes ggF production and $H \rightarrow \gamma\gamma$ decays

Virtual corrections to top quark production 4t and tt production Top quark associated production ttH and tH production

Several phenomena not explained by SM, e.g. Dark Matter, matter-antimatter asymmetry There has to be new physics!

Many models of new physics require extended Higgs sector

- Supersymmetry
- Electroweak baryogenesis

Two Higgs Doublet Model (2HDM) \rightarrow 5 Higgs bosons: h, H, A, H^{+/-}

Generic model introducing additional Higgs doublet to SM

Important parameters:

- m_h, m_A, m_H, m_{H+/-}
- $\tan\beta = v_2/v_1$
- "Alignment limit" $\cos(\beta \cdot \alpha) = 0 \rightarrow h$ is SM-like

Matter-antimatter asymmetry of the Universe can be generated in 2HDM (electroweak baryogenesis)

Possible in particular region in 2HDM paramter space Largely unexplored!

Universität Hamburg

Matter-antimatter asymmetry of the Universe can be generated in 2HDM (electroweak baryogenesis)

Possible in particular region in 2HDM paramter space Largely unexplored!

Direct access via A \rightarrow ZH with H \rightarrow tt

Probes region with large m_{A} and small $tan\beta$

Universität Hamburg

Matter-antimatter asymmetry of the Universe can be generated in 2HDM (electroweak baryogenesis)

Possible in particular region in 2HDM paramter space Largely unexplored!

Direct access via A \rightarrow **ZH with H** \rightarrow **tt** Probes region with large m_A and small tan β

Universität Hamburg

Matter-antimatter asymmetry of the Universe can be generated in 2HDM (electroweak baryogenesis)

Possible in particular region in 2HDM paramter space **Largely unexplored!**

Direct access via A \rightarrow ZH with H \rightarrow tt

Probes region with large m_{A} and small $tan\beta$

Top quarks are an excellent tool to probe the Higgs sector

Examples:

- Measurement of ttH and tH with H → bb
- **Brand-new** search for heavy Higgs bosons $A \rightarrow ZH$ with $H \rightarrow tt$

* Will focus here on CMS, but similar results by ATLAS

Higgs-boson production at the LHC

April 30, 2024

Higgs-boson production at the LHC

Higgs-boson decay channels

Branching ratios for $m_{\rm H}$ = 125 GeV in the Standard Model [arXiv: 1610.07922]

The CMS Detector

All detector components needed in Higgs analyses Very different signatures depending on the production and decay modes

The CMS Detector

Myon chambers

EC/A

HCAL

U

Higgs-boson candidate events

$H \rightarrow \gamma \gamma$ candidate

ttH with $\rm H \rightarrow bb$ candidate

All detector components needed in Higgs analyses Very different signatures depending on the production and decay modes

April 30, 2024

Measurement of ttH and tH production with $H \rightarrow bb$

ttH measurements at the LHC

ttH production: direct probe of top-Higgs coupling

Small production cross section: 0.5 pb at 13 TeV [arXiv: 1610.07922] Multitude of possible final states with many and different objects

Independent observation by ATLAS and CMS in 2018, combining several channels

Phys. Rev. Lett. 120 (2018) 231801 Phys. Lett. B 784 (2018) 173

channel		dataset	$\mu = \tfrac{\sigma}{\sigma_{\rm SM}}$	significance	add. results	
$H\tob\overline{b}$	ATLAS	139fb^{-1}	$0.35^{+0.36}_{-0.34}$	1.0σ (2.7 exp.)	STXS, CP	[JHEP 06 (2022) 097] [arXiv:2303.05974, subm. to PLB]
	CIVIS	13010	0.33_0.26	1.30 (4.1 exp.)	51A3, CF	[CMS-PAS-HIG-19-011]
$\rm H \rightarrow VV^*/\tau\tau$	ATLAS CMS	80fb^{-1} 137fb^{-1}	$\begin{array}{c} 0.58^{+0.26}_{-0.25} \\ 0.92^{+0.25}_{-0.23} \end{array}$	1.8σ (3.1 exp.) 4.7σ (5.2 exp.)	СР	[ATLAS-CONF-2019-045] [Eur. Phys. J. C 81 (2021) 378] [JHEP 07 (2023) 092]
$H \to \gamma \gamma$	ATLAS	$139{\rm fb}^{-1}$	$1.43_{-0.34}^{+0.39}$	5.2σ (4.4 exp.)	STXS, CP	[Phys. Rev. Lett. 125 (2020) 061802] [JHEP 07 (2023) 088]
	CMS	$137{ m fb}^{-1}$	$1.38^{+0.36}_{-0.29}$	6.6σ (4.7 exp.)	STXS, CP	[Phys. Rev. Lett. 125 (2020) 061801] [JHEP 07 (2021) 027]
$H \to ZZ^* \to 4l$	ATLAS	$139{\rm fb}^{-1}$	$1.7^{+1.7}_{-1.1}$		STXS	[Eur. Phys. J. C 80 (2020) 957]
	CMS	$137{ m fb}^{-1}$	$0.17\substack{+0.98 \\ -0.17}$	_	STXS	[Eur. Phys. J. C 81 (2021) 488]

ttH results with **full Run-2 dataset** in (almost) all channels **Major improvements in analysis methods & extended interpretations**

ttH with H $\rightarrow \gamma \gamma$

Very clean channel:

clear signature + excellent mass resolution (1%)
 → reconstruct Higgs boson from photons

But tiny rate: limited by statistical uncertainties

Benefit from large $H \rightarrow bb$ branching ratio of 58 %

But challenging final state:

- Many jets: no unambiguous event reconstruction
- Large (irreducible) background due to tt+jets production with large uncertainties

Benefit from large $H \rightarrow bb$ branching ratio of 58 %

Here: latest CMS result with 138 fb⁻¹ of data at 13 TeV [CMS-PAS-HIG-19-011]

Channel	BR	Background
Fully hadronic (FH)	45%	QCD, tt+jets
Single lepton (SL)	30%	tt+jets
Dilepton (DL)	5%	tt+jets

Leptons: e or μ (no explicit τ reconstruction or veto)

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

April 30, 2024

Final discriminant observable

CMS *Preliminary* 41.5 fb⁻¹ (13 TeV) Events FH SL DL Prefit QCD tīV ttC ttLF 10⁶ ttB ttγ V+jets tHW VV tHa —ttH Data Syst 10⁵ ≥4 b-tags ≥4 b-taqs ≥3 b-taqs 5 jets 3 jets 7 jets 8 jets l≥9 jets l≥6 jets l≥4 jets 10⁴ ttLF, ttC, tt2b cats. ttLF, ttC, tt2b cats. ttLF, ttC cats. tHW_ttH+ttB tHq cat. tHW .ttH+ttB ttH+ttB tHa 1.1 10³ cat. cat. cat. cat. e cat. cat. 10² 10 1.4 Events/bkg 1.2 1.0 0.8 111 111 111 0.6 20 40 60 80 100 0 2017 discriminant bins

CMS-PAS-HIG-19-011

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, acc. by JHEP]

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, acc. by JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, acc. by JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

Universität Hamburg

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, acc. by JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

Universität Hamburg

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, acc. by JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

Universität Hamburg

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, acc. by JHEP]

Major improvement in background model: tt+bb background from new state-of-the-art Powheg ttbb 4FS simulation [Eur. Phys. J. C78 (2018) 502]

- Improved description of jet kinematics
- Embedded into Powheg tt 5FS sample to cover full phase space
- Overall tt+bb normalisation freely-floating

Careful scruntiny of NN input variables, incl. GoF tests

Model flexibility extensively validated with pseudo experiments

	m		
ttB component in pseudo data	$\mu_{\mathrm{t}\bar{\mathrm{t}}\mathrm{H}}$	$t\bar{t}B$ norm	t t C norm
tt+bb cross section in toy data increa	ased by 20%	1.01 ± 0.09	1.01 ± 0.18
ttbb sample, ttB \times 1.2	1.03 ± 0.32	1.21 ± 0.15	1.01 ± 0.18
tt+bb in toy data from different gene	erator : 0.30	1.03 ± 0.11	0.77 ± 0.18
tt sample, ttB \times 1.2	1.06 ± 0.32	1.18 ± 0.12	0.85 ± 0.20
T	A	A	

Modelling uncertainties

- Freely-floating norm.
- $\mu_{R/F}$ scale
- PS scale (ISR/FSR)
- Collinear gluon-splitting
- ME-PS matching
- PDF

Injected signal strength (1.0) and background normalisation (1.2) recovered
Final discriminant

CMS *Preliminary* 41.5 fb⁻¹ (13 TeV) Events FH SL DL Prefit ttC ttLF QCD tīV 10⁶ ttB ttγ V+jets tHW VV tHa —ttH Data Syst 10⁵ ≥4 b-tags ≥4 b-tags ≥3 b-tags 5 jets 3 jets 7 jets 8 jets l≥9 jets l≥6 jets l≥4 jets 10⁴ ttLF, ttC cats. ttLF, ttC, tt2b cats. ttLF, ttC, tt2b cats. tHW_ttH+ttB 1.1 tHq cat. tHW .ttH+ttB ttH+ttB tHa 1.1 10³ cat. cat. cat. cat. cat. e cat. 10² 10 Events/bkg 1.4 1.2 1.0 0.8 111 111 111 0.6 20 40 60 80 100 0 2017 discriminant bins

CMS-PAS-HIG-19-011

Final discriminant

CMS-PAS-HIG-19-011 41.5 fb⁻¹ (13 TeV) Postfit DL ttC ttLF ttγ tHW VV Data Syst ≥3 b-tags 3 jets l≥4 jets ttLF, ttC cats. tHW .ttH+ttB ttH+ttB cat. cat. cat.

April 30, 2024

Results: ttH production with H \rightarrow bb

Universität Hamburg

CMS-PAS-HIG-19-011

ttH signal strength μ_{ttH} = 0.33 +/-0.26 SM compatibility p-value: 2% Agreement with ATLAS result: $0.35^{+0.36}_{-0.34}$ [JHEP 06 (2022) 97]

Results: tH production with H \rightarrow bb

CMS-PAS-HIG-19-011

Dedicated analysis categories targeting tH events

Upper limit of 14.6 obs. (19.3^{+9.2}_{-6.0} **exp.) x SM tH production** at 95% CL

April 30, 2024

Coupling interpretation

CMS-PAS-HIG-19-011

April 30, 2024

CP interpretation

CMS-PAS-HIG-19-011

CP-odd component in top-Higgs interaction? In principle allowed at tree level!

$$\mathcal{A}(\mathrm{Htt}) = -\frac{m_{\mathrm{t}}}{v}\overline{\psi}_{\mathrm{t}}\left(\kappa_{\mathrm{t}} + \mathrm{i}\tilde{\kappa}_{\mathrm{t}}\gamma_{5}\right)\psi_{\mathrm{t}}$$

CP-even/CP-odd Yukawa coupling (SM: $\kappa_t = 1$, $\kappa_t = 0$)

→ can modify ttH and tH rates and kinematics differently

Simultaneoulsy floating ttH and tH contributions \rightarrow constraints on CP-odd top-Higgs coupling κ_t

Beyond inclusive measurements

New physics might modify kinematics → measure differentially! ("Simplified Template Cross Section", STXS)

April 30, 2024

Beyond inclusive measurements

New physics might modify kinematics → measure differentially! ("Simplified Template Cross Section", STXS)

April 30, 2024

ttH production in bins of $p_T(H)$

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

April 30, 2024

ttH production in bins of $p_T(H)$

CMS-PAS-HIG-19-011

Sensitivity still limited but **interesting for future measurements and combination** with other channels

ttH production in bins of $p_{T}(H)$

CMS-PAS-HIG-19-011

April 30, 2024

Search for heavy Higgs bosons A \rightarrow ZH with H \rightarrow tt

Model-independent search for narrow resonances A and H in ttZ final state Inspired by 2HDM "smoking gun" signature

Brand new analysis of 138 fb⁻¹ of 13 TeV data First CMS result in this final state

[CMS-PAS-B2G-23-006]

Model-independent search for narrow resonances A and H in ttZ final state Inspired by 2HDM "smoking gun" signature

Brand new analysis of 138 fb⁻¹ of 13 TeV data First CMS result in this final state

[CMS-PAS-B2G-23-006]

Model-independent search for narrow resonances A and H in ttZ final state Inspired by 2HDM "smoking gun" signature

Final observable

CMS-PAS-B2G-23-006

Example **signal distribution** for (mA, mH) = (1000, 600) GeV

April 30, 2024

Final observable

CMS-PAS-B2G-23-006

Example **signal distribution** for (mA, mH) = (1000, 600) GeV

Analysis strategy

with n = 5 or \geq 6 jets

April 30, 2024

tt and Z/ γ +jets background modelling

Universität Hamburg

CMS-PAS-B2G-23-006

Shape from simulation + normalisation from fit to data

tt background

Z/γ+jets background

tt and Z/ γ +jets background modelling

Universität Hamburg

CMS-PAS-B2G-23-006

Shape from simulation + normalisation from fit to data

tt background

- Powheg tt NLO simulation
- Post-fit normalisation 0.82—0.94 ± 0.1* (relative to NNLO+NNLL prediction)

Z/γ+jets background

* Exact value depending on signal mass hypothesis

tt and Z/ γ +jets background modelling

Universität Hamburg

CMS-PAS-B2G-23-006

Shape from simulation + normalisation from fit to data

tt background

- Powheg tt NLO simulation
- Post-fit normalisation 0.82—0.94 ± 0.1* (relative to NNLO+NNLL prediction)

Z/γ+jets background

- MadGraph Z/γ + ≤ 4 jets LO simulation + NLO EWK+QCD corrections in p_T(Z/γ)
- 40% norm. uncert. on Z/γ + b/c jets component
- $Z/\gamma + b/c$ post-fit normalisation $\approx 1.4 \pm 0.1^*$
- * Exact value depending on signal mass hypothesis

CMS-PAS-B2G-23-006

Various (m_A, m_H) hypotheses tested: for each, fit across all signal + control regions

No significant excess above the background observed

Largest fluctuation: 2.1 σ local significance for (m_A, m_H) = (1000, 850) GeV

April 30, 2024

CMS-PAS-B2G-23-006

Model-independent limits on narrow resonance $A \rightarrow ZH$ production in ttZ final state

April 30, 2024

2HDM interpretation

CMS-PAS-B2G-23-006

April 30, 2024

2HDM interpretation

2HDM interpretation

CMS-PAS-B2G-23-006

Constraints on models of electroweak baryogenesis

April 30, 2024

Summary

Higgs sector plays a key role in the Universe

- Mass generation of fundamental particles
- Origin of matter-antimatter asymmetry?
 Still unknown territory for large parts

Top quarks are an excellent tool to explore the Higgs sector!

- Measurement of the top-Higgs coupling
- Direct search for additional Higgs bosons

So far, the Higgs sector looks SM-like... but LHC Run 3 at full swing + more than 90% of all (HL-)LHC data yet to come

Our top route into the Higgs sector has just started!

Additional material

A journey from the begin to the end of the Universe

In the standard model (SM) of particle physics, the Higgs boson is deeply related to the mechanism that creates the masses of elementary particles and, as such, has very characteristic properties, which are different from any other known particle. While the experimental results so far are consistent with a SM nature of the Higgs boson, it might well be part of an extended Higgs sector, which is predicted in many beyond-the-SM (BSM) scenarios that address mysteries the SM cannot explain. The large data samples collected at the CERN Large Hadron Collider (LHC), together with new analysis techniques, allow measurements of the Higgs boson properties at unprecedented precision as well as direct searches for additional Higgs bosons with highest reach. The results play a crucial role in probing the SM and provide a unique window to potential BSM effects.

The coupling of the Higgs boson to the heaviest known quark, the top quark, is particularly exciting because it is large and, therefore, it plays a special role in the SM or possible BSM physics. In the presentation, I will discuss different techniques to explore the Higgs sector using top quarks, and I will highlight two recent results: a measurement of Higgs boson production in association with top quarks (ttH and tH production), which provide direct probes of the top-Higgs coupling, in the bb decay channel of the Higgs boson; and a brand-new search for heavy additional Higgs bosons decaying to a Z boson and a top quark-antiquark pair (ttZ final state). The search accesses a mostly unexplored part of the Two Higgs Double Model (2HDM) parameter space that is relevant in models of baryogenesis and could explain the matter-antimatter asymmetry in the Universe.

Special, unlike anything we have seen before!

Where do we stand?

The CMS detector

April 30, 2024

CMS-PAS-HIG-19-011

	tī sample	$t\bar{t}b\bar{b}$ sample
POWHEG version	Powheg v2	Powheg-Box-Res
PYTHIA version	8.230	8.230
Flavour scheme	5	4
PDF set	NNPDF3.1	NNPDF3.1
m _t	172.5 GeV	172.5 GeV
m _b	0	4.75 GeV
$\mu_{ m R}$	$\sqrt{\frac{1}{2}\left(m_{\mathrm{T,t}}^2+m_{\mathrm{T,\bar{t}}}^2\right)}$	$\frac{1}{2}\sqrt[4]{m_{\mathrm{T,t}}\cdot m_{\mathrm{T,\bar{t}}}\cdot m_{\mathrm{T,b}}\cdot m_{\mathrm{T,\bar{b}}}}$
$\mu_{ m F}$	$\mu_{ m R}$	$\frac{1}{4}\left[m_{\mathrm{T,t}} + m_{\mathrm{T,\bar{t}}} + m_{\mathrm{T,b}} + m_{\mathrm{T,\bar{b}}} + m_{\mathrm{T,g}}\right]$
h _{damp}	$1.379 \cdot m_t$	$1.379 \cdot m_{\rm t}$
Tune	CP5	CP5

Analysis strategy in FH channel

Closure test in data in VR
QCD-background estimation

CMS-PAS-HIG-19-011

- In CR: ANN_{QCD} = ANN_{data} − ANN_{non-QCD bkg. (from MC)} → shape of ANN distribution
- Normalisation in SR freely-floating in final fit
 - Independently per N_{jets} category and year: 9 QCD normalisation parameters

Systematic uncertainties

CMS-PAS-HIG-19-011

Source	Туре	Correlation	Remarks				
Renorm./fact. scales	R	correlated	Scale uncertainty of (N)NLO prediction, indepen- dent for tīH, tHq, tHW, tī, t, V+jets, VV				
$PDF+\alpha_{S}(gg)$	R	correlated	PDF uncertainty for gg initiated processes, independent for $t\bar{t}H$, tHq , tHW , and others				
PDF+ $\alpha_{\rm S}$ (q $\overline{\rm q}$)	R	correlated	PDF uncertainty of $q\overline{q}$ initiated processes (tt¯W,W,Z) except tHq	PS scale FSR ⁺	s	correlated	Final state radiation uncertainty of the PS
PDF+ $\alpha_{\rm S}$ (qg)	R	correlated	PDF uncertainty of qg initiated processes (single t) except tHW				(PYTHIA), independent for $t\bar{t}H$, $t\bar{t}B$ ($t\bar{t}b\bar{b}$ sample), other $t\bar{t}$ ($t\bar{t}$ sample)
Collinear gluon splitting [†]	S	correlated	Additional 100% rate uncertainty on $t\overline{t}+2b$ component of $t\overline{t}B$ background	ME-PS matching $(t\bar{t})^{\dagger}$	R	correlated	NLO ME-PS matching (for $t\bar{t}$ + jets events), independent for $t\bar{t}B$, $t\bar{t}C$, $t\bar{t}LF$
$\mu_{\rm R}$ scale	S	correlated	Renormalisation scale uncertainty of the ME gen-	Underlying event $(t\bar{t})$	R	correlated	Underlying event (for all $t\bar{t} + jets$ events)
			erator, independent for $t\bar{t}H$, tHq , tHW , $t\bar{t}B$ ($t\bar{t}bb$	STXS migration	R	correlated	Signal, only in STXS measurement
$u_{\rm T}$ scale	S	correlated	Factorisation scale uncertainty of the ME gener-	STXS acceptance	S	correlated	Signal, only in STXS measurement
Wh bear	0	concluted	ator, independent for $t\bar{t}H$, tHq , tHW , $t\bar{t}B$ ($t\bar{t}b\bar{b}$	Integrated luminosity	R	partially	Signal and all backgrounds
			sample), other t \overline{t} (t \overline{t} sample)	Lepton ID/Iso (2 sources)	s	uncorrelated	Signal and all backgrounds
PDF shape	S	correlated	From NNPDF variations, independent for tHq, tHW, t \overline{tB} (t \overline{tbb} sample), other t \overline{t} (t \overline{t} sample) and	Trigger efficiency (4 sources)	s	uncorrelated	Signal and all backgrounds
				L1 prefiring correction	S	uncorrelated	Signal and all backgrounds
PS scale ISR [†]	S	correlated	Initial state radiation uncertainty of the PS	Pileup	S	correlated	Signal and all backgrounds
13 state 15K	0	concluted	(PYTHIA), independent for $t\bar{t}H$, $t\bar{t}B$ ($t\bar{t}b\bar{b}$ sample), other $t\bar{t}$ ($t\bar{t}$ sample)	Jet energy scale (11 sources)	s	partially	Signal, $t\bar{t} + jets$ and single t
				Jet energy resolution	S	uncorrelated	Signal, $t\bar{t} + jets$ and single t
				b tag bkg. contam. (2 sources)	s	partially	Signal and all backgrounds
				b tag bkg. contam. stat. (4 sources)	S	uncorrelated	Signal and all backgrounds
				b tag charm (2 sources)	S	partially	Signal and all backgrounds
				TF _{loose} correction	S	uncorrelated	QCD background estimate
				Size of the MC samples	S	uncorrelated	Statistical uncertainty of signal and background prediction due to limited sample size

Systematic uncertainties

CMS-PAS-HIG-19-011

April 30, 2024

Uncertainties

Uncertainty source	$\Delta \mu_{t\bar{t}H}$ (observed)	$\Delta \mu_{t\bar{t}H}$ (expected)				
Total experimental	+0.10/-0.10	+0.11/-0.10				
jet energy scale and resolution	+0.08 / -0.07	+0.09/-0.09				
b tagging	+0.07/-0.06	+0.06/-0.02				
luminosity	+0.02/-0.02	+0.01/-0.01				
Total theory	+0.16 / -0.16	+0.18/-0.14				
t $ar{\mathrm{t}}+\mathrm{jets}\mathrm{background}$	+0.15/-0.16	+0.12/-0.11				
signal modelling	+0.06/-0.01	+0.13 / -0.06				
Size of the simulated event samples	+0.13/-0.12	+0.10/-0.10				
Total systematic	+0.20/-0.21	+0.23/-0.19				
Statistical	+0.17/-0.16	+0.17/-0.17				
background normalisation	+0.13 / -0.13	+0.13/-0.13				
$t\bar{t}B$ and $t\bar{t}C$ normalisation	+0.12/-0.12	+0.12/-0.12				
QCD normalisation	+0.01/-0.01	+0.01/-0.01				
Total	+0.26/-0.26	+0.28/-0.25				

Sensitivity limited by systematic uncertainties

Jet energy calibration & b-tagging

tt+bb modelling uncertainties

Size of simulated event samples

Are the ANN inputs well-modelled?

						L	DL		
		9 jets,≥ 4b tags)	ets, $\geq 4 b tags$)	ets, $\geq 4 b tags$)	6 jets,≥ 4b tags)	ets, $\geq 4 b tags$)	4 jets, ≥ 3b tags)	ets, 3b tags)	
	Observable	$\overline{)}$	(8j	[2]	<u>^I</u>	(5j	$\overline{\mathbb{N}}$	(3)	
MEM	matrix element method discriminant	~	~	~	~	~	~		
BLR	b tagging likelihood ratio discriminant						~		
$\ln \left(\frac{BLR}{1-BLR}\right)$	transformed b tagging likelihood ratio discriminant				~	~			
$p_T(j^2)$	$p_{\rm T}$ of second leading jet, ranked in $p_{\rm T}$						~		
$p_T(j^3)$	$p_{\rm T}$ of third leading jet, ranked in $p_{\rm T}$							~	
$p_{T}(j^{7})$	$p_{\rm T}$ of seventh leading jet, ranked in $p_{\rm T}$	\checkmark							
$p_T(b^i)$	$p_{\rm T}$ of $i^{\rm th}, i$ =1–4, leading b-tagged jet, ranked in $p_{\rm T}$						~	r	
$\eta(j^i)$	η of $i^{\rm th}, i$ =1–2, leading jet, ranked in b tagging discriminant value	~	\checkmark	~					
$\langle d_{b}(j) \rangle$	average b tagging discriminant value of all jets				~	~			
$\langle d_{b}(b) \rangle$	average b tagging discriminant value of all b-tagged jets				~	~			
$d_{b}^{3}(j)$	third highest b tagging discriminant value of all jets				\checkmark	~			
$Var(d_b(j))$	variance of b tagging discriminant values of all jets				\checkmark	~			
$\langle \Delta R(bb) \rangle$	average of ΔR between two b-tagged jets						~		
$\langle \Delta R(jj) \rangle$	average of ΔR between two jets	~	\checkmark						
min $\Delta R(jj)$	minimum of ΔR between two jets		\checkmark	~				~	
$\max \Delta R(jj)$	maximum of ΔR between two jets	\checkmark	\checkmark	~					
$\langle \Delta \eta (bb) \rangle$	average of $\Delta \eta$ between two b-tagged jets				\checkmark	~			
$\langle \Delta \eta (jj) \rangle$	average of $\Delta \eta$ between two jets	\checkmark	\checkmark	~	\checkmark	~			
$\langle m(b) \rangle$	average invariant mass of all b-tagged jets				\checkmark	~			V
$\langle m(j) \rangle$	average invariant mass of all jets				\checkmark	~		U	-
$m(bb_{\min \Delta R})$	invariant mass of pair of b-tagged jets closest in ΔR				~	~	√		
$m(jb_{\min \Delta R})$	invariant mass of pair of jet and b-tagged jet closest in ΔR						~		
$m(jj_{125 \text{ GeV}})$	invariant mass of pair of jets with mass closest to 125 GeV	\checkmark							
m(bb _{max m})	maximum invariant mass of pairs of b-tagged jets	\checkmark	~				√	~	
$m(jbb_{max p_T})$	invariant mass of jet and pair of b-tagged jets with highest $p_{\rm T}$						~		
$\langle p_T(j) \rangle$	average p_T of all jets				~	~			
$\langle p_T(b) \rangle$	average p_T of all b-tagged jets				\checkmark	~			
$p_{\rm T}({\rm bb}_{\min\Delta R})$	$p_{\rm T}$ of pair of b-tagged jets closest in ΔR				\checkmark	~	~	~	
$p_T(jj_{min \Delta R})$	p_T of pair of jets closest in ΔR							~	
$p_{T}(jb_{min \Delta R})$	$p_{\rm T}$ of pair of jet and b-tagged jet closest in ΔR							~	
$H_T(j)$	scalar sum of p_T of all jets				~	~	√		
$H_{T}(b)$	scalar sum of p_T of all b-tagged jets				~	~	√		
N(j)	number of jets				~				
N(b ^{loose})	number of jets with loose b tag						~		
$d_{\rm b} ({\rm b}_{\rm top}^{\rm tHW})^{\dagger}$	b tagging discriminant value of b jet from t quark decay from tHW reconstruction				1	~			
$ \eta(q^{tHq}) ^{\dagger}$	$ \eta $ of light-quark jet from tHq reconstruction				~	~			
$m(t_{lep}^{tEH})^{\dagger}$	inv. mass of leptonically decaying t quark from $\ensuremath{t\overline{t}}\xspace H$ reconstruction				\checkmark	~			
BDT ⁱ⁺	reconstruction BDT output for tHq, tTH, tT hypotheses				~	\checkmark			
A, S	event aplanarity and sphericity [76]	\checkmark	\checkmark	\checkmark					
H_i^{FW}	ith, i =0-5, Fox-Wolfram moment [77]	\checkmark	~	\checkmark					h
uFW / uFW	notic of Equ. Walfrom moments i -1.4	1		1					- PL

Supervised learning with simulated data: rely on MC simulation of observables and their correlations

Are the ANN input variables well modelled?

Strategy in ttH:

Goodness-of-fit test for all variables and pairs of variables

Key aspect in many machine-learning applications at the LHC! Different to many industry applications where labelled data is available

Background validation

Universität Hamburg

CMS-PAS-HIG-19-011

Post-fit background model obtained from main analysis fit to data

Limits on tH production

CMS *Preliminary* 138 fb⁻¹ (13 TeV) observed expected ---±1 SD expected ±2 SD expected $\mu_{t\bar{t}H} = 1$ 48.0 +25.0 2016 48.1 30.2^{+14.8} -9.4 16.5 2017 31.2^{+15.3} 31.4 2018 49.2^{+21.0} -14.2 27.5 DL 27.0^{+14.5} 25.0 SL 19.3 ^{+9.2} -6.0 14.6 Combined 20 40 60 80 100 0 95% CL limit on μ_{tH} CMS-PAS-HIG-19-011

April 30, 2024

ttH and tH cross sections vs. CP mixing angle

Universität Hamburg

CP interpretation

CP-odd component in top-Higgs interaction? In principle allowed at tree level!

$$\mathcal{A}(\mathrm{Htt}) = -\frac{m_{\mathrm{t}}}{v}\overline{\psi}_{\mathrm{t}}\left(\kappa_{\mathrm{t}} + \mathrm{i}\tilde{\kappa}_{\mathrm{t}}\gamma_{5}\right)\psi_{\mathrm{t}}$$

CP-even/CP-odd Yukawa coupling (SM: $\kappa_t = 1$, $\kappa_t = 0$)

→ can modify ttH and tH rates and kinematics differently

Simultaneoulsy floating ttH and tH contributions \rightarrow constraints on CP-odd top-Higgs coupling κ_t

Higgs-boson self-coupling

Higgs-boson self-coupling

FOEWPT

 First order EWK phase transition required to generate the observed matter-antimatter asymmetry

Figure 2. Variations of the effective potential with temperature in the case of (a) first- and (b) second-order phase transitions.

MSc thesis Y. Fischer, Universität Hamburg (2021)

Matthias Schröder | Top routes to the Higgs sector

MSc thesis Y. Fischer, Universität Hamburg (2021)

April 30, 2024

Universität Hamburg

CMS-PAS-B2G-23-006

