

Disentangling triple and four top quark production at the LHC

Karam Kaspar 19 June 2024

Multi-top production

- Top quark discovery in 1995 at Fermilab.
- Heaviest elementary SM particle with the largest Yukawa coupling.
- pp-collisions produce tttt, tttW & tttq events at the LHC.

Process	xsection [fb]	Final configuration
tttt	13.4	(4W, 4b)
tttW	1.3	(4W, 3b)
tttq	0.7	(3W, 3b, q)

tttW

tttq

Goal & Motivations

• Goal:

• Distinction between tttt and ttt signals.

• Motivation:

• ttt is important background for tttt with similar final states.

• Importance of tttt:

- o tttt is heaviest observed SM process.
- Determination of top Yukawa coupling.
- Enhancement via BSM physics.

• Importance of ttt:

• Occurrence of FVNI & FCNI.

Generator level

• Investigation of generator particle characteristics \rightarrow Distinctive patterns observed

tttW

tttW/tttt

Event selection

- Goal: Filtering high-quality reconstructed objects.
- Exact implementation of tttt selection from observation paper.
- Same-sign di-lepton (SR-21) & triple lepton (SR-31) channels.

Reconstruction level variables

- Goal: Find observables for the distinction of tttt, tttW and tttq events.
- Explored about 100 observables each in SR-21 and SR-31.

$N_{ m j}$	H_{T}	
$N_b^{ m loose}$	$N_b^{ m medium}$	N_{l}
$p_{T, MET}$	$p_{ m T}(\ell_{0,1,2})$	$ \eta(\ell$
$p_T(j_{0,1,2,3,4})$	$ \eta({ m j}_{0,1,2,3,4}) $	DF(j ₀
$p_T(b_{0,1,2,3,4})$	$ \eta(\mathrm{b}_{0,1,2,3,4}) $	max DF
$H_{ m T, \ f}$	$p_T(\mathrm{fj}_{0,1})$	$ \eta({\mathfrak f}$
$\min, \max \Delta R(\ell \ell)$	$\min, \max \Delta \eta(\ell \ell) $	min, mat
$\Delta R(\ell,{ m j})$	$ \Delta\eta(\ell,{ m j}) $	$ \Delta \phi$
$\Delta R(\mathrm{j, b})$	$ \Delta\eta({ m j,b}) $	$ \Delta \phi $
$\Delta R(\mathrm{j,fj})$	$ \Delta\eta({ m j,fj}) $	$ \Delta \phi $
$\Delta R(\mathrm{nb,\ b})$	$ \Delta\eta({ m nb,\ b}) $	$ \Delta \phi $
$M_{\mathrm{inv},\ \ell}$	$\maxM_{ m inv,jj}$	max
$\Sigma_\ell q_\ell$	$\max M_{ m inv, \ j \ fj}$	max
m_{T_0}	m_{W_0}	$m_T($

Most differentiating variables

SR-21

Most differentiating variables

SR-21

SR-21

Forward jets

tq vs tt analysis

• Jet recoil due to a top quark jet.

ttt vs tttt analysis

- Similar diagrams present in tttq production But: More jets are present.
- Indeed: Subtle effects are visible!

SR-21

Machine Learning

- Construction of binary and triple class ML models for SR-21 and SR-31.
- Extreme Gradient Boosting Decision Trees (XGBoost).
- ML procedure:
 - \circ Class imbalance \rightarrow Introduction of weights .
 - Hypertuning of model parameters with full data.
 - Data splitting into:
 - Training set: Classification known (80%).
 - Testing sets: Classification unknown (20%).
 - Final model creation with hypertuned parameters and training set.
 - Model application on test set.

Feature importance

- Feature sets obtained for the four ML models.
- Consideration of four importance types.
- Forward jet variables are also utilized.

Bin	- -	Friple	
SR-2 ℓ	$\mathbf{SR-3}\ell$	$\mathbf{SR-}2\ell$	S
N_j	N_j	N_j	
$H_{ m T}$	H_{T}	H_{T}	
$\sum_{\ell} q_{\ell}$	$\sum_{\ell} q_{\ell}$	$\sum_\ell q_\ell$	
$ \eta(\mathrm{fj}_0) $	$ \eta(\mathrm{fj}_0) $	$ \eta({ m fj}_0) $	p
m_{T_0}	$\min \Delta R(b,b)$	m_{T_0}	
m_{W_0}	$\max \Delta \eta(b,b) $	m_{W_0}	
$\operatorname{DF}(j_0)$	$p_{ m T}(j_2)$	$m_{ m T}(\ell_0)$	$ \Delta \eta $
$p_{ m T}(j_4)$	$ \Delta \phi(nb_0,b_0) $	$p_{ m T}({ m fj}_1)$	max
$\mid \max \mid \Delta \eta(b,b) \mid$	$ \min \Delta R(j,j)$	L_{T}	
		•••	

Binary SR-21

Feature importance weight

	1222	
	1552	
0 12	00 14	00

Correlation matrix

- Correlation between features is possible (e.g. $m_{T0} \& m_{W0}$).
- Correlation between features & BDT scores resembles patterns observed on reconstruction level.
- Correlation between BDT scores is also visible.

Triple SR-21

2	1	-4	-7	-2	8	10	7	0	14	38	24	47	-3	2	77	-46	-67		
3	2	-1	-5	5	82	45	39	-4	11	76	15	70	-5	2	43	-38	-30		- 100
1	1	2	-0	52	36	8	7	-2	-3	14	-2	11	-2	1	4	12	-13		- 90
-1	-1	2	3	27	10	2	2	1	-4	5	-3	4	1	0	3	12	-12		90
-1	-0	1	0	-2	-6	-2	-5	33	18	-0	21	2	17	1	13	-6	-12		- 80
-2	-0	1	1	2	16	8	8	2	2	14	0	8	6	-0	-14	-2	21		- 70
-1	-0	1	0	2	12	1	1	-0	3	10	3	5	4	-0	-11	-3	17		- 60
27	28	38	28	3	40	17	14	2	1	27	2	23	4	1	21	-34	-4		- 50
0	0	1	0	-1	0	-0	0	-0	-0	-1	-0	-1	0	-0	-17	-20	35		- 40
.00	3	-23	-15	1	2	1	1	-1	4	2	4	2	-3	-0	-9	-1	12		20
3	100	-10	-17	1	2	2	1	-3	4	2	3	2	-2	-0	-9	6	8		- 30
23	-10	100	45	-0	1	-1	-0	1	-1	-1	-2	-1	1	0	10	-31	6		- 20
15	-17	45	100	-1	-1	-3	-2	2	-4	-5	-5	-4	2	1	15	-23	-5		- 10
1	1	-0	-1	100	6	2	2	-0	-1	3	-1	2	-0	0	4	9	-11		- 0
2	2	1	-1	6	100	27	23	-3	2	40	4	32	-3	1	12	-19	-2		10
1	2	-1	-3	2	27	100	68	-6	15	54	18	55	-4	1	21	-23	-13		20
1	1	-0	-2	2	23	68	100	-8	11	42	13	50	-3	1	18	-20	-10		-20
-1	-3	1	2	-0	-3	-6	-8	100	-4	-4	-4	-4	14	0	-11	14	5		30
4	4	-1	-4	-1	2	15	11	-4	100	11	57	13	-3	1	18	-43	5		40
2	2	-1	-5	3	40	54	42	-4	11	100	14	80	-6	1	40	-32	-30		50
4	3	-2	-5	-1	4	18	13	-4	57	14	100	15	-2	2	29	-46	-7		60
2	2	-1	-4	2	32	55	50	-4	13	80	15	100	-6	1	47	-35	-38		70
-3	-2	1	2	-0	-3	-4	-3	14	-3	-6	-2	-6	100	-0	-4	3	3		- 20
-0	-0	0	1	0	1	1	1	0	1	1	2	1	-0	100	28	-31	-15		-00
-9	-9	10	15	4	12	21	18	-11	18	40	29	47	-4	28	100	-63	-85		90
-1	6	-31	-23	9	-19	-23	-20	14	-43	-32	-46	-35	3	-31	-63	100	14	•	-100
12	8	6	-5	-11	-2	-13	-10	5	5	-30	-7	-38	3	-15	-85	14	100		
I																	111		
~	~	~	~	5	~	5	5	~	~	~	~	~	~	~	~	4	Ô		

Correlation (%)

ROC curves

- Binary ROC AUC values:
 0 SR-21: 71.4%
 0 SR-31: 68.7%
- Best identification for tttq events, followed by tttt.
- tttW highly confused with other processes.

Triple SR-21

Confusion matrices

Binary SR-2l

Triple SR-2l

0.17	0.2	- 0.6
		- 0.5
0.32	0.3	- 0.4
		- 0.3
0.15	0.63	- 0.2
tttW Predicted event	tttq	

Top-philic heavy resonances

- Consideration of additional spin-0 and spin-1 states, either color-singlets or color-octets.
- New particles also present in 2HDM.
- Large top quark coupling, other couplings are negligible.
- Ongoing active searches.
- In this thesis: Scalar singlet boson with m = 600 GeV.

16

Application on BSM data

- Binary ROC AUC values:

 SR-21: 67.6%

 SR-31: 71.2%
- Best identification for tttq events, followed by tttt.
- tttW highly confused with other processes.

Outlook

- Fine-tuning of selection criteria for ttt production.
- Introduction of background processes.
- Advanced W boson and top quark reconstruction.
- Variables related to spin correlations.
- Implementation of graph neural networks.
- Application of PCA & LDA.

Any questions?

19

Karam Kaspar Master student

www.ugent.be

EXPERIMENTAL PARTICLE PHYSICS

E-mail: karam.kaspar@ugent.be

Feynman diagrams: tttt

Feynman diagrams: tttW

Feynman diagrams: tttq

 W^+

Feynman diagrams: tttq

diagr.7

Advanced reconstruction

• Transverse mass variable:

$$m_{\mathrm{T}}^2 \Big({ec p}_{\mathrm{T}}(\ell), {ec p}_{\mathrm{T}}^{\mathrm{miss}} \, \Big) = 2 {ec p}_{\mathrm{T}}(\ell) p_{\mathrm{T}}^{\mathrm{miss}} \left[1 - \cos(\Delta \phi)
ight] \leq m_W^2$$

- But p_T^{miss} contains all neutrino contributions.
- Consider:

$$pp o X + { ilde l}^+ { ilde l}^- o X + l^+ l^- ilde \chi_1^0 ilde \chi_1^0.$$

$$\rightarrow m_{\tilde{l}}^2 = m_l^2 + m_{\tilde{\chi}}^2 + 2 \left(E_{Tl} E_{T\tilde{\chi}} \cosh(\Delta \eta) - \boldsymbol{p}_{Tl} \cdot \boldsymbol{p}_{T\tilde{\chi}} \right)$$

• Additional variable defined as:

$$m_{\tilde{l}}^{2} \geq M_{T2}^{2}$$

$$\equiv \min_{p_{1}^{\prime}+p_{2}^{\prime}=p_{T}^{\prime}} \left[\max\{m_{T}^{2}(p_{Tl^{-}}, p_{1}^{\prime}), m_{T}^{2}(p_{Tl^{+}}, p_{2}^{\prime})\} \right]$$

• Application to W boson and top quark decays.

Top quark Yukawa coupling

- y_t coupling measurement via several processes
 But: Contamination with the Higgs width
- tttt analysis is useful:
 - \circ tttt cross section ~ y_t⁴
 - $\circ~$ No dependence of decay width

FVNI & FCNI in ttt production

- ttt contains FVNI and FCNI.
- But: FVNI forbidden at tree level and suppressed in loop corrections by GIM mechanism.
- BSM theories might enhance FVNIs (e.g. minimal supersymmetry).
- Absence of t in proton \rightarrow FVNI.

• Operator must connect to u-, t-quark on one side and to a top pair on the other side \rightarrow FCNI.

GIM mechanism

- Glashow–Iliopoulos–Maiani mechanism
- Cabbibo mechanism allows $K_L \rightarrow \mu^+ \mu^-$ with FVNI
- BR_{measured} (K_L $\rightarrow \mu + \mu -) = (6.84 \pm 0.11).10^{-9}$
- Proposal of charm quark:

$$\mathcal{M}_{\rm u} \propto g_{\rm W}^4 \cos \theta_c \sin \theta_c$$
 and $\mathcal{M}_{\rm c} \propto -g_{\rm W}^4 \cos \theta_c \sin \theta_c$
 $|\mathcal{M}|^2 = |\mathcal{M}_{\rm u} + \mathcal{M}_{\rm c}|^2 \approx 0$

 \rightarrow Suppression of FVNI interactions

29

Feature sets

Bin	ary	Triple			
SR-2 ℓ	SR-3ℓ	SR-2ℓ	SR-3 ℓ		
N_j	N_j	N_j	Nj		
$H_{ m T}$	$H_{ m T}$	$H_{ m T}$	$H_{ m T}$		
$\max \Delta \eta(b,b) $	$\min \Delta R(j, j)$	$L_{ m T}$	$ \eta(j_4) $		
m_{T_0}	$\min \Delta R(b,b)$	$M_{ ext{inv},\ell}$	$M_{\mathrm{inv},\ell}$		
m_{W_0}	$\max \Delta \eta(b,b) $	$\max \Delta \eta(b,b) $	min $\Delta R(j, j)$		
$\sum_\ell q_\ell$	M _{inv, j fj}	m_{T_0}	m_{T_0}		
$H_{T,f}$	$\sum_\ell q_\ell$	m_{W_0}	m_{W_0}		
$ \eta(fj_0) $	$H_{T,f}$	$\max M_{\mathrm{inv}, j \mathrm{fj}}$	$\max M_{\mathrm{inv},j}$		
$ \eta(fj_1) $	$ \eta(fj_0) $	$\sum_\ell q_\ell$	$\sum_\ell q_\ell$		
$p_{\mathrm{T}}(\mathrm{fj}_0)$	$ \eta(fj_1) $	$ \eta(fj_0) $	$H_{T,f}$		
$p_{\mathrm{T}}(\mathrm{fj}_1)$	$p_{\mathrm{T}}(\mathrm{fj}_0)$	$ \eta(fj_1) $	$ \eta(j_4) $		
$ \eta(j_4) $	$\Delta R(nb_0, b_0)$	$p_{\mathrm{T}}(\mathrm{fj}_0)$	$p_{\mathrm{T}}(\mathrm{fj}_{0})$		
$p_{ m T}(j_4)$	$ \Delta \phi(nb_0, b_0) $	$p_{\mathrm{T}}(\mathrm{fj}_1)$	max $DF(j_1)$		
$m_{ m T}(\ell_0)$	$ \eta(b_3) $	max $DF(j_4)$	$\Delta R(nb_0, b_0)$		
$\mathrm{DF}(j_0)$	$p_{\mathrm{T}}(j_2)$	$m_{ m T}(\ell_0)$	$ \Delta\eta(nb_0,b_0) $		
max $DF(j_4)$	$p_{\mathrm{T}}(j_3)$	$p_{\mathrm{T}}(j_0)$	$p_{\mathrm{T}}(b_3)$		
$p_{\mathrm{T}}(b_3)$	$ \eta j_3 $	$p_{\mathrm{T}}(j_4)$	max DF(j.		
$ \eta(b_3) $	$DF(j_3)$	$ \eta(j_4) $	$DF(j_1)$		
$p_{\mathrm{T}}(b_4)$	max $DF(j_3)$	max $DF(j_3)$	$DF(j_4)$		
$ \eta(b_4) $	$p_{\mathrm{T}}(j_4)$	$ \eta(b_4) $	$DF(j_2)$		
$p_{\mathrm{T}}(j_3)$	$ \eta(j_4) $	$p_{\mathrm{T}}(b_3)$	max $DF(j_2)$		
max $DF(j_3)$	max $DF(j_4)$	$p_{\mathrm{T}}(b_4)$	$p_{\mathrm{T}}(j_3)$		
		max $DF(j_2)$	$DF(j_3)$		
		$ p_T(j_3) $			

Loss function

- The loss function quantifies the error between predicted and actual values
- Loss function minimization using training set
- Underfitting or overfitting \rightarrow early stopping implementation

Loss functions

				Train Test
600 Nr. of	800 trees	1000	1200	1400

(d) Triple SR-3 ℓ model.

ROC curves

Confusion matrices

(c) Triple SR- 2ℓ model.

(d) Triple SR-3ℓ model.

BDT scores

Binary SR-21

Triple SR-21

PCA & LDA

- Curse of dimensionality: Higher dimensions → Lower statistical power
- Dimensionality reduction via PCA & LDA

 PCA: Maximum variability of the data
 LDA: Maximum separability of the classes

LDA

Grid vs Random search

Log Loss function

Model accuracy

Feature importance

• Feature importance formula:

$$\hat{I_{j}^{2}}(T) = \sum_{t=1}^{J-1} \hat{i_{t}^{2}} \mathbb{1}(v_{t}=j)$$

Summation over nonterminal nodes t of the J-terminal node tree T, v_t is the splitting variable associated with node t

• Terminal region splitting R into two subregions (R_1, R_r) with empirical improvement in squared error:

$$i^{2}(R_{l}, R_{r}) = \frac{w_{l}w_{r}}{w_{l} + w_{r}}(\bar{y}_{l} - \bar{y}_{r})^{2}$$

where \bar{y}_1 , \bar{y}_r are the left and right daughter response means respectively, and w_1 , w_r are the corresponding sums of the weights

