Conveners
Astrophysics, Geophysics and Plasma Physics
- Maarten BAES (UGent)
We start from a recent breakthrough, Park, J. et al., Phys. Rev. X 5.2 (2015): 021024: the first experimental demonstration of the transition of a high pressure plasma to a state of magnetic condensate. A magnetic condensate is a system where the magnetic field is completely expelled from a plasma, forming a sharp transition: the plasma behaves like a drop of liquid with a definite surface....
3D model of a reverse-vortex flow gliding arc plasmatron
G. Trenchev, St. Kolev, A. Bogaerts
PLASMANT research group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium Faculty of Physics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria
georgi.trenchev@uantwerpen.be
This study employs a comprehensive computational model for a 3D...
Solar wind plasma temperature and solar wind turbulence at ion and electron scales often show anisotropic features, with different temperature and fluctuation power in parallel and perpendicular direction with respect to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may...
The Mercator telescope is a 1.2m semi-automatic telescope placed at the Roque de los Muchachos observatory at the Canary Islands. The permanent availability allows us to occupy a specific niche in observational astrophysics: the possibility to make long-term time-series. To exploit this fully we developed a modern instrument programme. I will start this contribution with a review of our...
The closest large galaxy to our own Milky Way is Andromeda (M31). Its proximity allows observations of superb spatial resolution at all wavelengths. We have combined observations of M31 from Earth and space telescopes, ranging from the ultra-violet to millimeter wavelengths. This wavelength range covers the emission from all kinds of stars in this galaxy, but also the dark shadows caused by...
Molecular clouds (MC) are the birthplace of stars. This made them a prime object of interest for many observers. But the gas they are mostly composed of is more often than not, hard to observe directly. As a proxy, we look for the dusts present in these clouds. Even if they represent only a fraction of the mass of the MC (up to 1%), they have a strong radiation field associated to them.
An...
Active Galactic Nuclei (AGN) are believed to be among the most promising sources of the ultra-high-energy cosmic ray flux. A hadronic component which is accelerated in the high energy environment of an AGN immediately implies the production of high-energy neutrinos. Nevertheless, no clear correlation between AGN and the high-energy cosmic-neutrino flux obtained by IceCube has been found...
The current leading model for cosmology is the ΛCDM model, which assumes a Universe filled with Cold Dark Matter (CDM), and a dark energy component (Λ). The model succesfully predicts the non-linear growth of cosmic structures from the initial density perturbations observed in the Cosmic Microwave Background, to the large scale web of galaxies in the present-day Universe. The ΛCDM predictions...
We will show the results of two large parametric climate state studies for tidally locked terrestrial planets around M dwarf stars. We investigated for an Earth-like atmosphere and thermal forcing, 3D climate states for rocky planets with sizes between 1-2 Earth radii, orbital periods between 1-100 days, and also for different surface friction scenarios. We identified distinct climate state...